-
公开(公告)号:CN109034215A
公开(公告)日:2018-12-18
申请号:CN201810746776.6
申请日:2018-07-09
Applicant: 东北大学
CPC classification number: G06K9/6268 , G06K9/629 , G06N3/0454 , G06N3/08
Abstract: 本发明涉及一种基于深度卷积神经网络的安全帽佩戴检测方法;本发明包括:101、将待检测图像输入至训练后的深度卷积神经网络;102、获取深度卷积神经网络输出的检测结果,检测结果为满足预设条件的第一类边界框和第二类边界框;103、将检测结果中满足预设条件的第一类边界框和第二类边界框标记在待检测图像上;其中深度卷积神经网络包括:基础网络模块、卷积模块、自顶向下模块和预测模块。本发明方法模型简单且不需要复杂的图像预处理过程,针对人员其他身体部位被遮挡的情况也能准确的检测到人员是否佩戴安全帽,本发明自顶向下模块和预测模块通过将高层特征图和低层特征图融合的方法提高了对图像分辨率低的目标的检测性能。