具有化学键强界面的CF/PEEK复合材料及其制备方法

    公开(公告)号:CN111440342A

    公开(公告)日:2020-07-24

    申请号:CN202010419568.2

    申请日:2020-05-18

    Applicant: 东华大学

    Abstract: 本发明涉及一种具有化学键强界面的CF/PEEK复合材料及其制备方法,方法包括以下步骤:(1)将CF表面原有的上浆剂高温分解;(2)在饱和水蒸气环境中,对CF同时进行微波辐射和紫外光辐照,产物记为ACF;(3)将ACF浸入胺化PEEK/二甲基甲酰胺/碳纳米管悬浮液并升温使胺化PEEK与ACF发生反应,取出后干燥,得到上浆改性碳纤维MCF;(4)将MCF与PEEK材料叠层热压;即得具有化学键强界面的CF/PEEK复合材料;最终制得的具有化学键强界面的CF/PEEK复合材料的弯曲强度为900-1100MPa,弯曲模量为57-65GPa,界面剪切强度为100-120MPa,冲击后的剩余压缩强度为210-250MPa。本发明的方法特点为高效、环保、可实现规模化生产,制得的CF/PEEK复合材料可替代金属用于航空航天、医疗、机械、汽车和轨道交通等领域。

    具有高层间剪切强度和弯曲强度的CF/PEEK及其制备方法

    公开(公告)号:CN111423695A

    公开(公告)日:2020-07-17

    申请号:CN202010420351.3

    申请日:2020-05-18

    Applicant: 东华大学

    Abstract: 本发明涉及一种具有高层间剪切强度和弯曲强度的CF/PEEK及其制备方法,制备方法包括以下步骤:(1)将CF表面原有的上浆剂高温分解;(2)在饱和水蒸气环境中,对CF同时进行微波辐射和紫外光辐照,产物记为ACF;(3)将ACF浸入磺化聚醚醚酮/二甲基亚砜/碳纳米管悬浮液,取出后干燥,得到上浆改性碳纤维MCF;(4)将MCF与PEEK材料叠层热压;即得具有高层间剪切强度和弯曲强度的CF/PEEK。最终制得的产品的弯曲强度为850-1100MPa,弯曲模量为55-65GPa,层间剪切强度为95-110MPa,冲击后的剩余压缩强度为220-260MPa。本发明的方法特点为高效、环保、可实现规模化生产,制得的产品可替代金属用于航空航天、医疗、机械、汽车和轨道交通、石油运输等领域。

    高温力学性能优异的CF/PEEK复合材料及其制备方法

    公开(公告)号:CN111410759B

    公开(公告)日:2020-12-22

    申请号:CN202010420353.2

    申请日:2020-05-18

    Applicant: 东华大学

    Abstract: 本发明涉及一种高温力学性能优异的CF/PEEK复合材料及其制备方法,制备方法包括以下步骤:(1)将CF表面原有的上浆剂高温分解;(2)在饱和水蒸气环境中,对CF同时进行微波辐射和紫外光辐照,产物记为ACF;(3)将ACF浸入聚酰胺酸/N‑甲基‑2‑吡咯烷酮/碳纳米管悬浮液,取出后干燥,再进行两段热处理,得到上浆改性碳纤维MCF;(4)将MCF与PEEK材料叠层热压;即得高温力学性能优异的CF/PEEK复合材料,其在25℃下的弯曲强度为780‑950MPa,弯曲模量为55‑65GPa,层间剪切强度为80‑93MPa;在200℃下的弯曲强度为550‑650MPa,弯曲模量为40‑50GPa,层间剪切强度为60‑75MPa。本发明的方法特点为高效、环保、可实现规模化生产,制得的复合材料可替代金属用于航空航天、医疗、机械、汽车等领域。

    高强高模电磁屏蔽功能结构一体化轻质材料及其制备方法

    公开(公告)号:CN113024995B

    公开(公告)日:2022-02-18

    申请号:CN202110154857.9

    申请日:2021-02-04

    Applicant: 东华大学

    Abstract: 本发明涉及一种高强高模电磁屏蔽功能结构一体化轻质材料及其制备方法,高强高模电磁屏蔽功能结构一体化轻质材料由镀镍碳纤维、聚多巴胺层、羧酸化的CNT和环氧树脂构成的CF‑Ni‑PDA/CNT/epoxy复合材料;聚多巴胺层位于镀镍碳纤维和环氧树脂之间,聚多巴胺层与镀镍碳纤维之间由Ni‑N键和氢键连接,聚多巴胺层与环氧树脂之间由N‑C键连接;制备方法为:先将化学镀镍后的碳纤维进行浅表氧化,再沉积聚多巴胺层得到CF‑Ni‑PDA,然后以CF‑Ni‑PDA、羧酸化的CNT和环氧树脂为原料,制备CF‑Ni‑PDA/CNT/epoxy复合材料。本发明的复合材料具有电磁屏蔽功能、更高的拉伸强度和模量的材料。

    具有高疲劳强度的CF/PEEK复合材料及其制备方法

    公开(公告)号:CN111572115B

    公开(公告)日:2021-06-04

    申请号:CN202010419572.9

    申请日:2020-05-18

    Applicant: 东华大学

    Abstract: 本发明涉及一种具有高疲劳强度的CF/PEEK复合材料及其制备方法,制备方法包括以下步骤:(1)将CF表面原有的上浆剂高温分解;(2)在饱和水蒸气环境中,对CF同时进行微波辐射和紫外光辐照,产物记为ACF;(3)将ACF浸入聚醚酰亚胺/二氯甲烷/碳纳米管悬浮液,取出后干燥,得到上浆改性碳纤维MCF;(4)将MCF与PEEK材料叠层热压;即得具有高疲劳强度的CF/PEEK复合材料;最终制得的CF/PEEK复合材料的弯曲强度为700‑800MPa,107次循环弯曲疲劳强度为360‑440MPa,弯曲模量为55‑62GPa,层间剪切强度为87‑100MPa,冲击后的剩余压缩强度为220‑260MPa。本发明的方法特点为高效、环保、可实现规模化生产,制得的复合材料可替代金属用于航空航天、医疗、机械、汽车和轨道交通、石油运输等领域。

    具有高疲劳强度的CF/PEEK复合材料及其制备方法

    公开(公告)号:CN111572115A

    公开(公告)日:2020-08-25

    申请号:CN202010419572.9

    申请日:2020-05-18

    Applicant: 东华大学

    Abstract: 本发明涉及一种具有高疲劳强度的CF/PEEK复合材料及其制备方法,制备方法包括以下步骤:(1)将CF表面原有的上浆剂高温分解;(2)在饱和水蒸气环境中,对CF同时进行微波辐射和紫外光辐照,产物记为ACF;(3)将ACF浸入聚醚酰亚胺/二氯甲烷/碳纳米管悬浮液,取出后干燥,得到上浆改性碳纤维MCF;(4)将MCF与PEEK材料叠层热压;即得具有高疲劳强度的CF/PEEK复合材料;最终制得的CF/PEEK复合材料的弯曲强度为700-800MPa,107次循环弯曲疲劳强度为360-440MPa,弯曲模量为55-62GPa,层间剪切强度为87-100MPa,冲击后的剩余压缩强度为220-260MPa。本发明的方法特点为高效、环保、可实现规模化生产,制得的复合材料可替代金属用于航空航天、医疗、机械、汽车和轨道交通、石油运输等领域。

    具有化学键强界面的CF/PEEK复合材料及其制备方法

    公开(公告)号:CN111440342B

    公开(公告)日:2021-05-04

    申请号:CN202010419568.2

    申请日:2020-05-18

    Applicant: 东华大学

    Abstract: 本发明涉及一种具有化学键强界面的CF/PEEK复合材料及其制备方法,方法包括以下步骤:(1)将CF表面原有的上浆剂高温分解;(2)在饱和水蒸气环境中,对CF同时进行微波辐射和紫外光辐照,产物记为ACF;(3)将ACF浸入胺化PEEK/二甲基甲酰胺/碳纳米管悬浮液并升温使胺化PEEK与ACF发生反应,取出后干燥,得到上浆改性碳纤维MCF;(4)将MCF与PEEK材料叠层热压;即得具有化学键强界面的CF/PEEK复合材料;最终制得的具有化学键强界面的CF/PEEK复合材料的弯曲强度为900‑1100MPa,弯曲模量为57‑65GPa,界面剪切强度为100‑120MPa,冲击后的剩余压缩强度为210‑250MPa。本发明的方法特点为高效、环保、可实现规模化生产,制得的CF/PEEK复合材料可替代金属用于航空航天、医疗、机械、汽车和轨道交通等领域。

    具有高层间剪切强度的CF/PEEK复合材料及其制备方法

    公开(公告)号:CN111423694B

    公开(公告)日:2021-01-05

    申请号:CN202010419576.7

    申请日:2020-05-18

    Applicant: 东华大学

    Abstract: 本发明涉及一种具有高层间剪切强度的CF/PEEK复合材料及其制备方法,制备方法包括以下步骤:(1)将CF表面原有的上浆剂高温分解;(2)在饱和水蒸气环境中,对CF同时进行微波辐射和紫外光辐照,产物记为ACF;(3)将ACF浸入聚醚酮酮齐聚物/二氯甲烷溶液,取出后干燥,得到上浆改性碳纤维MCF;(4)将MCF与PEEK材料叠层热压;即得具有高层间剪切强度的CF/PEEK复合材料;具有高层间剪切强度的CF/PEEK复合材料的弯曲强度为600‑750MPa,弯曲模量为50‑60GPa,层间剪切强度为80‑90MPa,冲击后的剩余压缩强度为220‑255MPa。本发明的方法特点为高效、环保、可实现规模化生产,制得的复合材料可替代金属用于航空航天、医疗、机械、汽车和轨道交通、石油运输等领域。

Patent Agency Ranking