一种估计路段自由流速度及交叉口上游到达流率的方法

    公开(公告)号:CN110148295B

    公开(公告)日:2020-09-01

    申请号:CN201910267003.4

    申请日:2019-04-03

    申请人: 东南大学

    IPC分类号: G08G1/01

    摘要: 本发明公开了基于贝叶斯后验分布从历史号牌数据中获取单个车道路段自由流速度和上游到达流率的方法,以单个车道及其上下游交叉口为研究对象,建立以车辆自由流速度、红时到达流率、绿时到达流率为参数的后验分布函数,以号牌识别数据作为样本,采用M‑H算法进行参数估计,得出各参数的概率密度分布。本发明中将周期内上游车辆到达根据配时方案划分为车辆在相位红灯期间到达和相位绿灯期间到达两种情况,并分别估计两种情况下的到达流率分布,同时估计得到的分布一定程度上体现了干线车流波动特性,估计结果可为干线协调配时方案评估和微调提供参考。

    一种估计路段自由流速度及交叉口上游到达流率的方法

    公开(公告)号:CN110148295A

    公开(公告)日:2019-08-20

    申请号:CN201910267003.4

    申请日:2019-04-03

    申请人: 东南大学

    IPC分类号: G08G1/01

    摘要: 本发明公开了基于贝叶斯后验分布从历史号牌数据中获取单个车道路段自由流速度和上游到达流率的方法,以单个车道及其上下游交叉口为研究对象,建立以车辆自由流速度、红时到达流率、绿时到达流率为参数的后验分布函数,以号牌识别数据作为样本,采用M-H算法进行参数估计,得出各参数的概率密度分布。本发明中将周期内上游车辆到达根据配时方案划分为车辆在相位红灯期间到达和相位绿灯期间到达两种情况,并分别估计两种情况下的到达流率分布,同时估计得到的分布一定程度上体现了干线车流波动特性,估计结果可为干线协调配时方案评估和微调提供参考。

    基于高斯混合模型的信号交叉口饱和车头时距估计方法

    公开(公告)号:CN110070734B

    公开(公告)日:2022-01-28

    申请号:CN201910397787.2

    申请日:2019-05-14

    申请人: 东南大学

    IPC分类号: G08G1/08 G06K9/62

    摘要: 本发明提供一种基于高斯混合模型的信号交叉口饱和车头时距估计方法。主要解决的技术问题是:利用车辆号牌数据,基于高斯混合模型,提出一种完全数据驱动的信号交叉口饱和车头时距估计方法。根据采集的信号交叉口号牌数据,分车道提取车头时距,用高斯混合模型对车头时距进行分类,得到两种状态下车头时距的高斯分布模型。根据信号交叉口的实际情况,该模型可看成是饱和状态和非饱和状态下车头时距高斯分布的组合,则两种分布中均值较小的分布可看作是饱和车头时距的高斯分布,其均值即为饱和车头时距。

    一种基于号牌识别和GPS数据的排队长度实时估计方法

    公开(公告)号:CN110322704B

    公开(公告)日:2021-05-04

    申请号:CN201910514435.0

    申请日:2019-06-14

    申请人: 东南大学

    IPC分类号: G08G1/065 G08G1/123

    摘要: 本发明公开了一种基于号牌识别和GPS数据的排队长度实时估计方法,包括如下步骤:S1:通过车辆在路段中的停车位置和与停车位置相关的特征参数,建立二级随机森林回归模型;S2:对二级随机森林回归模型进行训练和测试,确定最终的随机森林回归模型;S3:将实际排队车辆中所有车辆的号牌信息,作为最终随机森林回归模型的输入,通过最终随机森林回归模型的输出,确定出实际路段中车辆排队的长度。本发明利用GPS轨迹数据提供的车辆停车位置和上下游号牌匹配数据提供对应停车位置相关的特征参数,建立随机森林回归模型,将从号牌数据中提取出的特征作为随机森林回归模型的输入,从而可以预测待测车辆的停车位置,得到具体的实时排队长度。

    一种基于号牌识别和GPS数据的排队长度实时估计方法

    公开(公告)号:CN110322704A

    公开(公告)日:2019-10-11

    申请号:CN201910514435.0

    申请日:2019-06-14

    申请人: 东南大学

    IPC分类号: G08G1/065 G08G1/123

    摘要: 本发明公开了一种基于号牌识别和GPS数据的排队长度实时估计方法,包括如下步骤:S1:通过车辆在路段中的停车位置和与停车位置相关的特征参数,建立二级随机森林回归模型;S2:对二级随机森林回归模型进行训练和测试,确定最终的随机森林回归模型;S3:将实际排队车辆中所有车辆的号牌信息,作为最终随机森林回归模型的输入,通过最终随机森林回归模型的输出,确定出实际路段中车辆排队的长度。本发明利用GPS轨迹数据提供的车辆停车位置和上下游号牌匹配数据提供对应停车位置相关的特征参数,建立随机森林回归模型,将从号牌数据中提取出的特征作为随机森林回归模型的输入,从而可以预测待测车辆的停车位置,得到具体的实时排队长度。

    基于高斯混合模型的信号交叉口饱和车头时距估计方法

    公开(公告)号:CN110070734A

    公开(公告)日:2019-07-30

    申请号:CN201910397787.2

    申请日:2019-05-14

    申请人: 东南大学

    IPC分类号: G08G1/08 G06K9/62

    摘要: 本发明提供一种基于高斯混合模型的信号交叉口饱和车头时距估计方法。主要解决的技术问题是:利用车辆号牌数据,基于高斯混合模型,提出一种完全数据驱动的信号交叉口饱和车头时距估计方法。根据采集的信号交叉口号牌数据,分车道提取车头时距,用高斯混合模型对车头时距进行分类,得到两种状态下车头时距的高斯分布模型。根据信号交叉口的实际情况,该模型可看成是饱和状态和非饱和状态下车头时距高斯分布的组合,则两种分布中均值较小的分布可看作是饱和车头时距的高斯分布,其均值即为饱和车头时距。