一种基于深度学习的水下声源定位方法

    公开(公告)号:CN109993280A

    公开(公告)日:2019-07-09

    申请号:CN201910236715.X

    申请日:2019-03-27

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于深度学习的水下声源定位方法,包括:对使用KRAKEN程序模拟出的向量数据进行归一化操作,并叠加0均值高斯随机噪声复向量n,得到在频率f处的模拟声场数据p(f);根据模拟声场数据p(f)构建归一化协方差矩阵H,并对矩阵H进行Hermitian分解,将复矩阵H转化为卷积神经网络能够处理的实矩阵,得到卷积神经网络的输入数据;使用输入数据训练卷积神经网络,得到水下声源定位预测模型,则根据观测到的声场数据,预测出信号源的距离和深度。本发明针对单、多声源情形下水下声源定位使用了LeNet‑5卷积神经网络与56层深度残差网络,取得了拥有较高精度和准确率的水下声源定位算法,并提高了水下声源定位的实时性。

    一种基于深度学习的水下声源定位方法

    公开(公告)号:CN109993280B

    公开(公告)日:2021-05-11

    申请号:CN201910236715.X

    申请日:2019-03-27

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于深度学习的水下声源定位方法,包括:对使用KRAKEN程序模拟出的向量数据进行归一化操作,并叠加0均值高斯随机噪声复向量n,得到在频率f处的模拟声场数据p(f);根据模拟声场数据p(f)构建归一化协方差矩阵H,并对矩阵H进行Hermitian分解,将复矩阵H转化为卷积神经网络能够处理的实矩阵,得到卷积神经网络的输入数据;使用输入数据训练卷积神经网络,得到水下声源定位预测模型,则根据观测到的声场数据,预测出信号源的距离和深度。本发明针对单、多声源情形下水下声源定位使用了LeNet‑5卷积神经网络与56层深度残差网络,取得了拥有较高精度和准确率的水下声源定位算法,并提高了水下声源定位的实时性。

Patent Agency Ranking