-
公开(公告)号:CN107222875A
公开(公告)日:2017-09-29
申请号:CN201710555307.1
申请日:2017-07-10
Applicant: 东南大学
Abstract: 本发明公开了一种基于大数据分析的小基站开关控制方法,包括:采集场景信息步骤;数据预处理步骤;提取特征步骤;选择并训练模型步骤;预测步骤。本发明利用特殊场景下时刻表以及小基站接入人数的历史记录,建立数学模型,预测未来小基站内的待服务人数,根据待服务人数去控制小基站的开关,达到节能、减少基站间干扰的目的。在建立数学模型的过程中,本方法结合数据挖掘和机器学习,提高了预测的准确率和系统的实用性。
-
公开(公告)号:CN108134979B
公开(公告)日:2020-04-14
申请号:CN201711261843.7
申请日:2017-12-04
Applicant: 东南大学
Abstract: 本发明提供了基于深度神经网络的小基站开关控制方法,包括:采集基站中的用户信息;将所有用户数据整合成可供模型训练的路径数据样本集合;构建神经网络模型;输入数据并训练模型;收集待预测用户数据,预测用户下一时刻位置;计算基站未来服务用户的数目,控制基站开关。本发明方法通过预测基站内待服务人数,控制超密集网络中小基站的开关,达到了降低基站功耗,减少基站间的干扰,优化超密集网络中资源分配的目的;在建立数学模型的过程中,本方法结合了数据挖掘和机器学习,提高了预测的准确率和系统的实用性。
-
-
-
公开(公告)号:CN107222875B
公开(公告)日:2019-10-01
申请号:CN201710555307.1
申请日:2017-07-10
Applicant: 东南大学
Abstract: 本发明公开了一种基于大数据分析的小基站开关控制方法,包括:采集场景信息步骤;数据预处理步骤;提取特征步骤;选择并训练模型步骤;预测步骤。本发明利用特殊场景下时刻表以及小基站接入人数的历史记录,建立数学模型,预测未来小基站内的待服务人数,根据待服务人数去控制小基站的开关,达到节能、减少基站间干扰的目的。在建立数学模型的过程中,本方法结合数据挖掘和机器学习,提高了预测的准确率和系统的实用性。
-
公开(公告)号:CN108134979A
公开(公告)日:2018-06-08
申请号:CN201711261843.7
申请日:2017-12-04
Applicant: 东南大学
Abstract: 本发明提供了基于深度神经网络的小基站开关控制方法,包括:采集基站中的用户信息;将所有用户数据整合成可供模型训练的路径数据样本集合;构建神经网络模型;输入数据并训练模型;收集待预测用户数据,预测用户下一时刻位置;计算基站未来服务用户的数目,控制基站开关。本发明方法通过预测基站内待服务人数,控制超密集网络中小基站的开关,达到了降低基站功耗,减少基站间的干扰,优化超密集网络中资源分配的目的;在建立数学模型的过程中,本方法结合了数据挖掘和机器学习,提高了预测的准确率和系统的实用性。
-
-
-
-
-