-
公开(公告)号:CN115100847B
公开(公告)日:2023-05-26
申请号:CN202210550566.6
申请日:2022-05-18
Applicant: 东南大学
IPC: G08G1/01
Abstract: 本发明公开了面向低渗透率网联车轨迹数据的排队服务时间估计方法,该方法首先,根据车速信息判别车辆在路口的排队停车状态,识别标记排队停车车辆。然后,通过对车辆到达、驶离周期的一致性判别,识别标记过饱和车辆。接着,针对欠饱和、过饱和两种情况,将车辆停车状态进行转换,以此为输入构建基于Logistic回归的车辆排队服务时间概率模型。最后,采用拉普拉斯近似方法,基于贝叶斯先验‑后验滚动实现排队服务时间的动态估计。本发明适用于低渗透率数据环境,在网联车车辆轨迹样本有限的条件下,可以实现欠饱和、过饱和场景下的排队服务时间估计,能为基于网联车数据的信号控制优化提供支撑。
-
公开(公告)号:CN115100847A
公开(公告)日:2022-09-23
申请号:CN202210550566.6
申请日:2022-05-18
Applicant: 东南大学
IPC: G08G1/01
Abstract: 本发明公开了面向低渗透率网联车轨迹数据的排队服务时间估计方法,该方法首先,根据车速信息判别车辆在路口的排队停车状态,识别标记排队停车车辆。然后,通过对车辆到达、驶离周期的一致性判别,识别标记过饱和车辆。接着,针对欠饱和、过饱和两种情况,将车辆停车状态进行转换,以此为输入构建基于Logistic回归的车辆排队服务时间概率模型。最后,采用拉普拉斯近似方法,基于贝叶斯先验‑后验滚动实现排队服务时间的动态估计。本发明适用于低渗透率数据环境,在网联车车辆轨迹样本有限的条件下,可以实现欠饱和、过饱和场景下的排队服务时间估计,能为基于网联车数据的信号控制优化提供支撑。
-