-
公开(公告)号:CN113592836B
公开(公告)日:2022-11-18
申请号:CN202110898144.3
申请日:2021-08-05
Applicant: 东南大学
IPC: G06T7/00 , G06V10/74 , G06V10/764 , G06V10/80
Abstract: 本发明提供了一种深度多模态图卷积的脑图分类方法,通过将不同模态间脑图进行融合达到脑图的分类目的。首先进行多模态脑拓扑图构建,利用静息态功能磁共振数据与弥散张量磁共振数据依据其生物学意义构建脑拓扑图;然后,进行多模态融合,包含功能‑结构融合和动态‑静态融合两个部分。本发明不仅使用了多种模态特征,并对其进行了融合,能够充分利用特征间的相似性和互补性,这使得进行脑图分类的结果更加准确。
-
公开(公告)号:CN113592836A
公开(公告)日:2021-11-02
申请号:CN202110898144.3
申请日:2021-08-05
Applicant: 东南大学
Abstract: 本发明提供了一种深度多模态图卷积的脑图分类方法,通过将不同模态间脑图进行融合达到脑图的分类目的。首先进行多模态脑拓扑图构建,利用静息态功能磁共振数据与弥散张量磁共振数据依据其生物学意义构建脑拓扑图;然后,进行多模态融合,包含功能‑结构融合和动态‑静态融合两个部分。本发明不仅使用了多种模态特征,并对其进行了融合,能够充分利用特征间的相似性和互补性,这使得进行脑图分类的结果更加准确。
-