-
公开(公告)号:CN109740419B
公开(公告)日:2021-03-02
申请号:CN201811397129.5
申请日:2018-11-22
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所 , 南京三宝科技股份有限公司
Abstract: 本发明公开了一种基于Attention‑LSTM网络的视频行为识别方法。通过光流图序列生成模块对输入的RGB图序列进行变换,得到光流图序列;将光流图序列与原RGB图序列输入时域注意力取帧模块,分别选取两种图序列中非冗余的关键帧;将两种图的关键帧序列输入AlexNet网络特征提取模块,分别提取出两种帧图的时序特征和空间特征,通过特征分权加强模块,对最后一层卷积层输出的特征图执行加重与动作相关性强的特征权重的操作;将两个AlexNet网络特征提取模块输出的特征图输入LSTM网络行为识别模块,分别对两种图片进行识别,并将两种识别结果通过融合模块按比例融合,得到最终的视频行为识别结果。本发明不仅能实现从视频中识别行为的功能,且能提高识别的准确率。
-
公开(公告)号:CN109740419A
公开(公告)日:2019-05-10
申请号:CN201811397129.5
申请日:2018-11-22
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所 , 南京三宝科技股份有限公司
Abstract: 本发明公开了一种基于Attention-LSTM网络的视频行为识别方法。通过光流图序列生成模块对输入的RGB图序列进行变换,得到光流图序列;将光流图序列与原RGB图序列输入时域注意力取帧模块,分别选取两种图序列中非冗余的关键帧;将两种图的关键帧序列输入AlexNet网络特征提取模块,分别提取出两种帧图的时序特征和空间特征,通过特征分权加强模块,对最后一层卷积层输出的特征图执行加重与动作相关性强的特征权重的操作;将两个AlexNet网络特征提取模块输出的特征图输入LSTM网络行为识别模块,分别对两种图片进行识别,并将两种识别结果通过融合模块按比例融合,得到最终的视频行为识别结果。本发明不仅能实现从视频中识别行为的功能,且能提高识别的准确率。
-
公开(公告)号:CN109711433A
公开(公告)日:2019-05-03
申请号:CN201811451465.3
申请日:2018-11-30
Applicant: 东南大学 , 东南大学—无锡集成电路技术研究所 , 南京三宝科技股份有限公司
IPC: G06K9/62
Abstract: 本发明公开一种基于元学习的细粒度分类方法,步骤是:建立外部数据集,将数据集分为训练集、验证集和测试集,三者之间的样本类别互不相交,且测试集的样本类别小于训练集;对数据集中的样本进行数据增强;建立卷积神经网络,该卷积神经网络的输入为彩色图片,输出为彩色图片所属类别,分类层的长度等于外部数据集的类别数,损失函数采用softmax loss;采用训练集训练细粒度分类网络;利用测试集对预训练好的卷积神经网络进行测试,并根据测试结果对卷积神经网络进行微调。此种方法可以快速生成一个良好的通用初始化模型,可以使得在测试相关但不同的类别时,仅用较少的样本就可以取得较好的分类效果,来解决细粒度分类时没有大数据集的问题。
-
公开(公告)号:CN109447014A
公开(公告)日:2019-03-08
申请号:CN201811317221.6
申请日:2018-11-07
Applicant: 东南大学-无锡集成电路技术研究所 , 东南大学 , 南京三宝科技股份有限公司
Abstract: 本发明公开了一种基于双通道卷积神经网络的视频在线行为检测方法。首先,通过光流图片序列生成模块对输入的RGB图进行变换,得到光流图;其次,将得到的光流图与原RGB图通过双通道分别输入至两个相同的轻量双卷积核SSD网络中,分别提取出两种图的时序特征和空间特征以及检测框和置信分值;然后,通过融合模块对两种图片生成的检测框和置信分值进行融合,形成带检测框和置信分值的图片;最后,将带有检测框和置信分值的图片输入在线动作管道,从视频的角度给出最终的行为检测结果。本发明通过设计轻量双卷积核SSD网络,大幅度简化了深度学习网络,提高了行为检测效率。
-
-
-