-
公开(公告)号:CN115131669B
公开(公告)日:2024-07-30
申请号:CN202210909277.0
申请日:2022-07-29
Applicant: 中南大学
IPC: G06V20/10 , G06F16/29 , G06F16/51 , G06V10/62 , G06V10/75 , G06V10/762 , G06V10/774 , G06V10/82 , G06V20/00 , G01C21/32 , G01C21/00
Abstract: 本发明提供了一种多源数据协同的人车路网一体化构建方法,包括:获取开放街景地图数据、车辆轨迹数据、遥感影像数据、街景图像数据;提取现有道路拓扑数据并作为模板;利用车辆轨迹数据采用层次化建模策略生成道路网络数据;利用高分辨率遥感影像数据提取道路网络数据,与基于车辆轨迹数据提取的道路网络数据形成互补;利用街景图像数据提取道路语义信息;构成包含几何、拓扑、语义等全信息的道路网拓扑数据;匹配生成更新后的道路拓扑数据。本发明为城市级高精度导航道路网拓扑数据的获取与更新提供了有利的技术与方法支撑,在自动驾驶、智能交通系统、电子地图导航等应用中具有明显的应用前景和实用价值。
-
公开(公告)号:CN114495514A
公开(公告)日:2022-05-13
申请号:CN202210140895.3
申请日:2022-02-16
Applicant: 中南大学
Abstract: 本公开实施例中提供了一种多源数据协同的车辆违规掉头热点区域识别方法,属于电学技术领域,具体包括:对多条GPS轨迹数据进行清洗;利用窗口滑动算法对每条初始轨迹数据进行去除自相交操作,得到目标轨迹数据;提取掉头轨迹段,构成潜在违规掉头轨迹数据库,并保存轨迹点集合;以轨迹点集合为输入,获取对应路段内的街景图像数据;采用Yolov5深度神经网络模型识别街景图像数据,得到违规要素;进行场景解析,得到所有的违规掉头轨迹,形成违规掉头位置点集合;根据违规掉头位置点集合提取出违规掉头行为发生的热点区域。通过本公开的方案,提高了车辆违规掉头热点区域识别的检测效率、精准度和适应性。
-
公开(公告)号:CN116385994A
公开(公告)日:2023-07-04
申请号:CN202310394013.0
申请日:2023-04-13
Applicant: 中南大学
Abstract: 本发明提供了一种三维道路线提取方法及相关设备,包括:基于车载平台获取研究区域的双目影像数据以及惯导定位数据;根据惯导定位数据,对双目影像数据进行视差估计,得到视觉三维点云;在研究区域中确定以双目相机为圆心、预设距离为半径的区域作为目标区域,提取目标区域内的视觉三维点云,并对目标区域内的视觉三维点云进行转换,得到目标区域的路面鸟瞰图和点云高程图;将路面鸟瞰图和点云高程图输入车道线检测网络进行道路线提取,得到三维道路线以及道路线的三维坐标;与现有技术相比,克服了目前车载影像中道路线识别方法精度低、鲁棒性较差和检测成本过高等问题,提升车载影像中道路线检测的效率和质量。
-
公开(公告)号:CN115131669A
公开(公告)日:2022-09-30
申请号:CN202210909277.0
申请日:2022-07-29
Applicant: 中南大学
IPC: G06V20/10 , G06F16/29 , G06F16/51 , G06V10/62 , G06V10/75 , G06V10/762 , G06V10/774 , G06V10/82 , G06V20/00 , G01C21/32 , G01C21/00
Abstract: 本发明提供了一种多源数据协同的人车路网一体化构建方法,包括:获取开放街景地图数据、车辆轨迹数据、遥感影像数据、街景图像数据;提取现有道路拓扑数据并作为模板;利用车辆轨迹数据采用层次化建模策略生成道路网络数据;利用高分辨率遥感影像数据提取道路网络数据,与基于车辆轨迹数据提取的道路网络数据形成互补;利用街景图像数据提取道路语义信息;构成包含几何、拓扑、语义等全信息的道路网拓扑数据;匹配生成更新后的道路拓扑数据。本发明为城市级高精度导航道路网拓扑数据的获取与更新提供了有利的技术与方法支撑,在自动驾驶、智能交通系统、电子地图导航等应用中具有明显的应用前景和实用价值。
-
-
-