-
公开(公告)号:CN107145628B
公开(公告)日:2020-09-11
申请号:CN201710208092.6
申请日:2017-03-31
Applicant: 中南大学
IPC: G06F30/20 , G06F119/04
Abstract: 一种基于电化学‑热耦合模型的预测锂电池循环寿命的方法,包括以下步骤,1)获取锂电池的物性参数和电化学参数,并对电池进行充放电循环测试;2)利用步骤1)获得的参数信息,建立电化学‑热耦合模型,并对模型进行有效性验证;所述电化学‑热耦合模型是一个准二维电化学模型和一个三维热模型的耦合模型;3)验证模型的有效性;4)确定经验寿命函数;5)得到最终的寿命函数。本发明通过构建电化学热耦合多物理场模型,对仿真计算得到的寿命曲线进行函数拟合得到了具有快速响应、预测能力强、适用范围广的电池寿命预测方法。
-
公开(公告)号:CN107134575B
公开(公告)日:2020-05-15
申请号:CN201710202293.5
申请日:2017-03-30
Applicant: 中南大学
IPC: H01M4/48 , H01M4/1391 , H01M10/054 , B82Y40/00
Abstract: 本发明公开了一种钠离子电池负极材料的制备方法。将钛源和其他两种异原子化合物依次经溶胶凝胶、热处理、浓碱浸泡和高温煅烧等步骤制取得到异原子共掺杂二氧化钛纳米管钠离子电池负极材料。本方法通过简单常见的设备制备出的异原子共掺杂二氧化钛纳米管形貌均一,导电性能优良,离子扩散速率提高,因此其具有储钠容量大,循环性能佳,库伦效率高等优异的电化学性能。本发明制备工艺简单,原料易得,成本低廉,环境友好,重复性高,产量大,利于工业化生产,具有广泛的商业化应用前景。
-
公开(公告)号:CN105177631B
公开(公告)日:2017-10-13
申请号:CN201510576287.7
申请日:2015-09-11
Applicant: 中南大学
Abstract: 本发明公开了一种电解质体系简化的电解槽,它包括槽体,其特征是阳极、阳极导体和石墨阴极、阴极导体分别设置于槽体底部两边,中间设有绝缘隔板将两者隔开,阳极导杆与阳极连接,阴极导杆与石墨阴极连接,并分别从槽体下部引出,设有阳极的槽体一侧设有阳极加料口;用于电解精炼制备高纯铝时,电解质覆盖在阳极导体和阴极导体上,电解时,电解温度不低于电解质和阳极导体的熔点,电解过程电流密度为200mA/㎝2~1200mA/㎝2,本发明可直接采用原铝作为阳极,简化了电解质体系,提高了电流效率,且电解质表面结壳,能有效防止电解质挥发并具有保温的作用,也防止了产物跟空气接触,避免了铝的烧损,同时,不需要使用碳素阳极,在很大程度上防止了不必要的污染。
-
公开(公告)号:CN105304950A
公开(公告)日:2016-02-03
申请号:CN201510576284.3
申请日:2015-09-11
Applicant: 中南大学
IPC: H01M10/38 , H01M10/0561 , H01M2/14
CPC classification number: H01M10/38 , H01M2/14 , H01M10/0561
Abstract: 本发明公开了一种基于电解精炼金属电解槽的熔融盐储能电池,它包括水平状和竖直状的融熔盐储能电池,水平状的融熔盐储能电池它包括槽体,其特征是槽体底部两边分别设有石墨负极、金属负极和石墨正极、金属正极,槽体中间设有绝缘隔板将两者隔开,正极导杆与石墨正极连接,负极导杆与石墨负极连接,并分别从槽体引出;所述金属负极的电负性小于金属正极的电负性,两者之间的差值为0.34~1.54,电解质覆盖在金属负极与金属正极上面;所述熔融盐储能电池的充电电压为3V~6V,放电电压为1V~4V;本发明制备水平放置的熔融盐储能电池简化了电池槽结构,减小了对电解质密度的要求,方便加入电解质,加快电解质离子扩散速度,提高了放电电压。
-
公开(公告)号:CN105304950B
公开(公告)日:2018-03-06
申请号:CN201510576284.3
申请日:2015-09-11
Applicant: 中南大学
IPC: H01M10/38 , H01M10/0561 , H01M2/14
Abstract: 本发明公开了一种基于电解精炼金属电解槽的熔融盐储能电池,它包括水平状和竖直状的融熔盐储能电池,水平状的融熔盐储能电池它包括槽体,其特征是槽体底部两边分别设有石墨负极、金属负极和石墨正极、金属正极,槽体中间设有绝缘隔板将两者隔开,正极导杆与石墨正极连接,负极导杆与石墨负极连接,并分别从槽体引出;所述金属负极的电负性小于金属正极的电负性,两者之间的差值为0.34~1.54,电解质覆盖在金属负极与金属正极上面;所述熔融盐储能电池的充电电压为3V~6V,放电电压为1V~4V;本发明制备水平放置的熔融盐储能电池简化了电池槽结构,减小了对电解质密度的要求,方便加入电解质,加快电解质离子扩散速度,提高了放电电压。
-
公开(公告)号:CN107145628A
公开(公告)日:2017-09-08
申请号:CN201710208092.6
申请日:2017-03-31
Applicant: 中南大学
IPC: G06F17/50
Abstract: 一种基于电化学‑热耦合模型的预测锂电池循环寿命的方法,包括以下步骤,1)获取锂电池的物性参数和电化学参数,并对电池进行充放电循环测试;2)利用步骤1)获得的参数信息,建立电化学‑热耦合模型,并对模型进行有效性验证;所述电化学‑热耦合模型是一个准二维电化学模型和一个三维热模型的耦合模型;3)验证模型的有效性;4)确定经验寿命函数;5)得到最终的寿命函数。本发明通过构建电化学热耦合多物理场模型,对仿真计算得到的寿命曲线进行函数拟合得到了具有快速响应、预测能力强、适用范围广的电池寿命预测方法。
-
公开(公告)号:CN107134575A
公开(公告)日:2017-09-05
申请号:CN201710202293.5
申请日:2017-03-30
Applicant: 中南大学
IPC: H01M4/48 , H01M4/1391 , H01M10/054 , B82Y40/00
Abstract: 本发明公开了一种钠离子电池负极材料的制备方法。将钛源和其他两种异原子化合物依次经溶胶凝胶、热处理、浓碱浸泡和高温煅烧等步骤制取得到异原子共掺杂二氧化钛纳米管钠离子电池负极材料。本方法通过简单常见的设备制备出的异原子共掺杂二氧化钛纳米管形貌均一,导电性能优良,离子扩散速率提高,因此其具有储钠容量大,循环性能佳,库伦效率高等优异的电化学性能。本发明制备工艺简单,原料易得,成本低廉,环境友好,重复性高,产量大,利于工业化生产,具有广泛的商业化应用前景。
-
公开(公告)号:CN107145629A
公开(公告)日:2017-09-08
申请号:CN201710209193.5
申请日:2017-03-31
Applicant: 中南大学
IPC: G06F17/50
CPC classification number: G06F17/5009
Abstract: 一种优化电池电极厚度的方法,包括以下步骤:1)以能量密度E最大化或者功率密度P最大化作为为本方法的优化目标;2)获取基础电池规格的电极结构设计参数、电极材料的动力学参数及热物性参数;3)建立电池电化学热耦合模型,所述电化学热耦合模型为一个准二维电化学模型和一个三维热模型的耦合;4)验证模型的有效性;5)得到优化后的电池电极厚度。本发明能够有效缩短新材料或新产品的开发周期,降低开发成本,对于新材料或新产品的开发具有一定的指导意义。
-
公开(公告)号:CN105177631A
公开(公告)日:2015-12-23
申请号:CN201510576287.7
申请日:2015-09-11
Applicant: 中南大学
Abstract: 本发明公开了一种电解质体系简化的电解槽,它包括槽体,其特征是阳极、阳极导体和石墨阴极、阴极导体分别设置于槽体底部两边,中间设有绝缘隔板将两者隔开,阳极导杆与阳极连接,阴极导杆与石墨阴极连接,并分别从槽体下部引出,设有阳极的槽体一侧设有阳极加料口;用于电解精炼制备高纯铝时,电解质覆盖在阳极导体和阴极导体上,电解时,电解温度不低于电解质和阳极导体的熔点,电解过程电流密度为200mA/㎝2~1200mA/㎝2,本发明可直接采用原铝作为阳极,简化了电解质体系,提高了电流效率,且电解质表面结壳,能有效防止电解质挥发并具有保温的作用,也防止了产物跟空气接触,避免了铝的烧损,同时,不需要使用碳素阳极,在很大程度上防止了不必要的污染。
-
-
-
-
-
-
-
-