-
公开(公告)号:CN108776831A
公开(公告)日:2018-11-09
申请号:CN201810459432.7
申请日:2018-05-15
Applicant: 中南大学
Abstract: 本发明公开了一种基于动态卷积神经网络的复杂工业过程数据建模方法,包括以下步骤:选取与工业过程目标变量相关性强的过程变量,采样得到各过程变量的时间序列;用等深分箱箱形图对这些时间序列进行异常点检测与剔除,再用线性插值法填补;提取目标变量采样时刻前一个过程时滞范围内各过程变量的时间序列,组成包含过程动态特性的二维矩阵,形成图片式样本;构建动态卷积神经网络分析工业过程数据的动态特性、自动识别各敏感变量的时间和空间关系并建立目标变量的预测模型。本发明利用实际生产过程现场积累的大量历史数据,精准地建立了用可测过程变量预测难测目标变量的数据模型,对生产过程在线评估与动态调整、乃至节能减排具有重要意义。