-
公开(公告)号:CN113011427B
公开(公告)日:2022-06-21
申请号:CN202110285256.1
申请日:2021-03-17
申请人: 中南大学 , 重庆市地理信息和遥感应用中心
摘要: 本发明公开了基于自监督对比学习的遥感图像语义分割方法,包括以下步骤:构建语义分割网络模型(如Deeplab v3+);采用无标注数据对所述网络模型的编码器进行预训练;预训练完成后,在标注样本上对所述网络模型进行有监督语义分割训练;采用有监督语义分割训练完成的网络模型对遥感图像进行语义分割;在预训练的过程中,采用全局风格对比和局部匹配对比结合的方式进行对比学习。本发明将对比自监督学习应用于到了遥感语义分割数据集,提出了全局风格和局部匹配对比学习框架,形成了基于自监督对比学习的遥感图像语义分割方法,使得语义分割方法的适用面更广,分割效果更好。
-
公开(公告)号:CN113011427A
公开(公告)日:2021-06-22
申请号:CN202110285256.1
申请日:2021-03-17
申请人: 中南大学 , 重庆市地理信息和遥感应用中心
摘要: 本发明公开了基于自监督对比学习的遥感图像语义分割方法,包括以下步骤:构建语义分割网络模型(如Deeplab v3+);采用无标注数据对所述网络模型的编码器进行预训练;预训练完成后,在标注样本上对所述网络模型进行有监督语义分割训练;采用有监督语义分割训练完成的网络模型对遥感图像进行语义分割;在预训练的过程中,采用全局风格对比和局部匹配对比结合的方式进行对比学习。本发明将对比自监督学习应用于到了遥感语义分割数据集,提出了全局风格和局部匹配对比学习框架,形成了基于自监督对比学习的遥感图像语义分割方法,使得语义分割方法的适用面更广,分割效果更好。
-