火力发电厂双源加热熔盐储能系统

    公开(公告)号:CN111456818A

    公开(公告)日:2020-07-28

    申请号:CN202010334421.3

    申请日:2020-04-24

    IPC分类号: F01K3/00 F01K13/00

    摘要: 本发明涉及一种火力发电厂双源加热熔盐储能系统,该熔盐储能系统,包括火力发电系统、双源加热熔盐系统和熔盐储热系统,火力发电系统、双源加热熔盐系统和熔盐储热系统依次连接,实现火力发电系统高品位蒸汽和电力与熔盐储热系统之间的热交换功能。通过蒸汽和电的混合加热熔盐,可实现火力发电厂全负荷调峰。火力发电厂双源加热熔盐储能系统也可保证高品位蒸汽热能大部分储存起来,汽轮发电机组低负荷运行,发出电力进一步加热熔盐进行储热,使火力发电厂机组具备全负荷深度调峰能力和调峰后迅速增负荷能力。

    换热器内置的卧式气水分离器及其气水分离方法

    公开(公告)号:CN106422531A

    公开(公告)日:2017-02-22

    申请号:CN201610783299.1

    申请日:2016-08-31

    IPC分类号: B01D45/02 B01D45/18

    摘要: 本发明公开了一种换热器内置的卧式气水分离器,涉及一种用于化工、机械、勘探、电力等领域的气水分离器。它包括壳体、气水分离区、换热区、整流区、气水混合物入口、气相出口、分离液产物出口、换热液进口和换热液出口、导流板、气相通道、第一液相通道、第一引流隔板、第二引流隔板、第二液相通道;换热区内安装有换热管和换热隔板,相邻两个换热管之间安装有挡板,多个下换热管的出水口与所述多个上换热管的进水口连通;换热液进口与下换热管的进水口连通;换热液出口与上换热管的出水口连通。本发明将换热器内置,且占地面积小,无需检修空间,换热效果好。本发明还涉及这种换热器内置的卧式气水分离器的气水分离方法。

    火力发电厂熔盐储能放热系统
    7.
    发明公开

    公开(公告)号:CN111536491A

    公开(公告)日:2020-08-14

    申请号:CN202010335347.7

    申请日:2020-04-24

    IPC分类号: F22B1/06 F22D1/50

    摘要: 本发明涉及一种火力发电厂熔盐储能放热系统,该熔盐储能放热系统包括蒸汽发生系统、给水系统、蒸汽送回系统和熔盐系统,其给水系统与蒸汽发生系统连接,给水系统内的水送入蒸汽发生系统;熔盐系统与蒸汽发生系统连接,熔盐系统内的高温熔盐送入蒸汽发生系统;蒸汽发生系统与蒸汽送回系统连接,蒸汽发生系统产生的蒸汽进入蒸汽送回系统,之后送入火力发电厂相应的抽汽系统。通过熔盐蒸汽发生系统,将原电厂除氧器水或者高加出口水变成高参数蒸汽,并送回原电厂机组抽汽系统,用于做功发电。放热系统充分利用原电厂系统设备,产生低 损的蒸汽,送入抽汽系统尤其是一段抽汽系统,循环效率更高。

    带有旋膜的增压型液环真空泵回水系统及其回水方法

    公开(公告)号:CN106523366A

    公开(公告)日:2017-03-22

    申请号:CN201610783619.3

    申请日:2016-08-31

    IPC分类号: F04C19/00 F04C29/00 F04C29/04

    摘要: 本发明公开了一种带有旋膜的增压型液环真空泵回水系统,涉及一种用于化工、机械、勘探、电力等领域的液环真空泵回水系统。它包括真空泵本体、气水分离器、进物料管、出物料管、增压泵、旋膜区、冷却液入口、气水分离区、换热区、整流区、导流板、气相通道、环形隔板;旋膜区内安装有起膜管,起膜管的管壁上设有起膜孔;换热区内部安装有换热隔板,换热液进口与下换热管的进水口连通;换热液出口与上换热管的出水口连通;增压泵的输入端与分离液体出口连通,增压泵的输出端与所述回水口及冷却液入口连通。本发明有利于减少回水流体扰动,能够降低阻力。本发明还涉及这种带有旋膜的增压型液环真空泵回水系统的回水方法。

    一种自流式前置混凝抽真空方法

    公开(公告)号:CN111998693B

    公开(公告)日:2022-11-29

    申请号:CN202010827842.X

    申请日:2020-08-17

    IPC分类号: F28B9/10 F28B9/04

    摘要: 本发明公布了一种自流式前置混凝抽真空方法,所述的凝汽器(1)上设置的第一气水出口(1.1)通过管道与前置混凝器(2)一侧设置的气水入口(2.1)相连接,所述的前置混凝器(2)顶部设置的第二气水出口(2.3)通过管道与真空泵组(3)内设置的进气管(3.1)相连接,所述的进气管(3.1)的另一端与真空泵本体(3.2)相连接,所述的真空泵本体(3.2)的一侧通过管道与气水分离器(3.4)连接,它克服了现有技术中前置冷凝装置混凝液无法回收、混凝效率不足,混凝器直连大气造成了凝汽器漏气从而难以维持真空的缺点,具有无新增能耗回收混凝液、真空泵溢流工作液同样回注至凝汽器中进一步节约工作用水等优点。