-
公开(公告)号:CN114693005A
公开(公告)日:2022-07-01
申请号:CN202210603016.6
申请日:2022-05-31
申请人: 中国石油大学(华东)
IPC分类号: G06Q10/04 , G06Q50/02 , G06F30/23 , G06F30/27 , G06F30/28 , G06N3/04 , G06N3/08 , G06V10/44 , G06V10/82 , G06F17/14 , G06F111/10 , G06F113/08 , G06F119/14
摘要: 本发明公开了一种基于卷积傅里叶神经网络的三维地下油藏动态预测方法,属于油藏工程技术领域,利用构建的3D卷积傅里叶神经网络模型对三维地下油藏剩余油饱和度或压力进行动态预测,具体包括以下步骤:采集三维地下油藏数据;构建3D卷积傅里叶神经网络,结合LSTM同时考虑时间和空间信息;设置卷积傅里叶网络模型的超参数,训练3D卷积傅里叶网络模型;评估3D卷积傅里叶神经网络的性能;训练完成后,输出测试指标良好的3D卷积傅里叶网络模型。本发明实现了三维油藏模型的高精度快速预测,很好的针对三维油藏的时空性和物理系统的特点,更符合现场实际需求。
-
公开(公告)号:CN114429009B
公开(公告)日:2022-07-29
申请号:CN202210358246.0
申请日:2022-04-07
申请人: 中国石油大学(华东)
摘要: 本发明公开了一种基于元迁移学习的小样本有杆泵井工况诊断方法,属于石油工况诊断技术领域,本发明结合迁移学习和元学习两者性能的优点构建元迁移学习算法框架,通过使用在相关数据集上的预训练所得良好的网络初始化参数,再利用元学习特有的超参数自动学习能力,以更高的效率训练出用于工况诊断的模型,并将该模型应用于有杆泵井工况的实时监测中,实现科学合理地诊断油井生产问题,从而显著改善油藏开发效果;同时,使用元梯度正则化策略和困难任务样本选取方法,适用于实际油田井数多但可用带诊断标签少的情况,更贴近实际油田现场的油井故障诊断情况。
-
公开(公告)号:CN114510880A
公开(公告)日:2022-05-17
申请号:CN202210407067.1
申请日:2022-04-19
申请人: 中国石油大学(华东)
IPC分类号: G06F30/27 , G06K9/62 , E21B47/008
摘要: 本发明公开了一种基于傅里叶变换和几何特征的有杆泵工况诊断方法,属于有杆泵工况诊断技术领域,包括以下步骤:对所获有杆泵生产数据进行选择;针对示功图进行基于波动方程的傅里叶系数提取;获取示功图曲线数据,进行示功图简单几何特征提取;采用DCA将傅里叶系数与简单几何特征进行融合;使用XGBoost算法建立有杆泵工况诊断模型,并进行模型训练;进行有杆泵工况诊断模型的参数优化;对优化后的有杆泵工况诊断模型,进行模型性能评价;将训练完成的有杆泵工况诊断模型应用到油田现场。本发明能够提高油田开发现场对有杆泵工况诊断的效率,同时提高对油田现有数据的有效利用,实现高效诊断有杆泵工况。
-
公开(公告)号:CN114492216A
公开(公告)日:2022-05-13
申请号:CN202210406824.3
申请日:2022-04-19
申请人: 中国石油大学(华东)
摘要: 本发明公开了一种基于高分辨率表征学习的抽油机运行轨迹模拟方法,属于石油工程技术领域,包括如下步骤:构建并联多分辨率网络模型;设定模型参数;收集抽油机图像数据集,标注关键点并制作样本集;增强数据集;输入并联多分辨率网络模型进行多分辨率并行卷积;多分辨率融合;输出预测关键点位置热点图;误差反向传播,优化学习器参数;输出抽油机关键点预测热图;模型评价;输出模型在线应用。本发明方法学习到的抽油机关键点高分辨率表示不仅在语义上很强,而且在空间上也很精确。本发明借助多分辨率并联网络,实现关键点热图预测,模拟抽油机运行轨迹,节省油田成本。
-
公开(公告)号:CN114444620A
公开(公告)日:2022-05-06
申请号:CN202210362470.7
申请日:2022-04-08
申请人: 中国石油大学(华东)
摘要: 本发明公开了一种基于生成式对抗神经网络的示功图故障诊断方法,属于采油故障诊断技术领域,包括如下步骤:对示功图样本库数据进行数据清洗;基于采油工程理论及典型示功图特性,对示功图数据点进行特征提取;对数量较少的故障类别样本采用生成式对抗神经网络进行生成,生成过程中对生成器网络的输出进行条件约束;基于原始样本及生成样本,将数据划分为训练集、验证集、测试集;采用Xgboost分类算法对样本进行分类;利用准确率和召回率对故障诊断结果进行综合评估;利用训练完成后的分类模型对故障进行实时监测诊断,实时判断故障类型。本发明能够显著提高分类模型对故障样本的特异识别能力,降低故障的误报/漏报率。
-
公开(公告)号:CN114444620B
公开(公告)日:2022-07-22
申请号:CN202210362470.7
申请日:2022-04-08
申请人: 中国石油大学(华东)
摘要: 本发明公开了一种基于生成式对抗神经网络的示功图故障诊断方法,属于采油故障诊断技术领域,包括如下步骤:对示功图样本库数据进行数据清洗;基于采油工程理论及典型示功图特性,对示功图数据点进行特征提取;对数量较少的故障类别样本采用生成式对抗神经网络进行生成,生成过程中对生成器网络的输出进行条件约束;基于原始样本及生成样本,将数据划分为训练集、验证集、测试集;采用Xgboost分类算法对样本进行分类;利用准确率和召回率对故障诊断结果进行综合评估;利用训练完成后的分类模型对故障进行实时监测诊断,实时判断故障类型。本发明能够显著提高分类模型对故障样本的特异识别能力,降低故障的误报/漏报率。
-
公开(公告)号:CN114492216B
公开(公告)日:2022-07-19
申请号:CN202210406824.3
申请日:2022-04-19
申请人: 中国石油大学(华东)
摘要: 本发明公开了一种基于高分辨率表征学习的抽油机运行轨迹模拟方法,属于石油工程技术领域,包括如下步骤:构建并联多分辨率网络模型;设定模型参数;收集抽油机图像数据集,标注关键点并制作样本集;增强数据集;输入并联多分辨率网络模型进行多分辨率并行卷积;多分辨率融合;输出预测关键点位置热点图;误差反向传播,优化学习器参数;输出抽油机关键点预测热图;模型评价;输出模型在线应用。本发明方法学习到的抽油机关键点高分辨率表示不仅在语义上很强,而且在空间上也很精确。本发明借助多分辨率并联网络,实现关键点热图预测,模拟抽油机运行轨迹,节省油田成本。
-
公开(公告)号:CN114492213B
公开(公告)日:2022-07-01
申请号:CN202210401235.6
申请日:2022-04-18
申请人: 中国石油大学(华东)
IPC分类号: G06F30/27 , G06F17/13 , G06F17/14 , G06N3/04 , G06N3/08 , G06Q10/04 , G06Q50/02 , G06F111/10 , G06F113/08 , G06F119/14
摘要: 本发明公开了一种基于小波神经算子网络模型剩余油饱和度和压力预测方法,属于油藏工程技术领域,包括如下步骤:使用序贯高斯过程生成不同网格数的渗透率场,利用数值模拟器计算不同渗透率场下油藏模型的渗透率和饱和度作为样本库;根据功能设置输入输出数据;构建小波神经算子网络模型,利用小波转化地下油水流动偏微分方程,嵌入物理意义;设置小波神经算子网络模型的超参数,在对应功能的数据集下训练小波神经算子网络模型;验证训练完成的小波神经算子网络模型的性能;输出训练完成且性能评价良好的小波神经算子网络模型,利用该模型实时采集油藏数据预测饱和度和压力场图分布。本发明可以实现快速高精度的油藏剩余油分布和饱和度预测。
-
公开(公告)号:CN114444402A
公开(公告)日:2022-05-06
申请号:CN202210362472.6
申请日:2022-04-08
申请人: 中国石油大学(华东)
IPC分类号: G06F30/27 , G06N3/08 , G06F30/23 , G06F113/08 , G06F119/14
摘要: 本发明公开了一种基于深度强化学习的油藏注采优化方法,属于油气田开发工程领域,包括如下步骤:采集油田地质数据建立油藏数值模拟模型;构建深度强化学习Actor‑Critic算法框架;读取当前时刻油藏的状态,并做归一化处理;利用策略网络执行一次动作,实时改变井的决策方案;计算当前的奖励,训练更新策略网络和动作价值网络的参数;根据最终训练的策略网络得到不同开发时刻的最优生产方案。本发明中的深度强化学习方法能够根据不同的油藏状态自适应地设计生产方案,可以在有限的时间和计算资源下实现更高的经济效益;同时还可以用于油田开发过程中的井位优化、历史拟合等问题,具有很好的推广应用价值。
-
公开(公告)号:CN114429009A
公开(公告)日:2022-05-03
申请号:CN202210358246.0
申请日:2022-04-07
申请人: 中国石油大学(华东)
摘要: 本发明公开了一种基于元迁移学习的小样本有杆泵井工况诊断方法,属于石油工况诊断技术领域,本发明结合迁移学习和元学习两者性能的优点构建元迁移学习算法框架,通过使用在相关数据集上的预训练所得良好的网络初始化参数,再利用元学习特有的超参数自动学习能力,以更高的效率训练出用于工况诊断的模型,并将该模型应用于有杆泵井工况的实时监测中,实现科学合理地诊断油井生产问题,从而显著改善油藏开发效果;同时,使用元梯度正则化策略和困难任务样本选取方法,适用于实际油田井数多但可用带诊断标签少的情况,更贴近实际油田现场的油井故障诊断情况。
-
-
-
-
-
-
-
-
-