一种树枝状季铵盐页岩抑制剂及其制备方法与应用

    公开(公告)号:CN106519254B

    公开(公告)日:2017-11-14

    申请号:CN201610957891.9

    申请日:2016-11-03

    IPC分类号: C08G83/00 C09K8/035

    摘要: 本发明涉及一种树枝状季铵盐页岩抑制剂及其制备方法与应用,该抑制剂是由端胺基树枝状聚合物与环醚、叔胺进行季铵化反应得到的改性产物。制备方法包括步骤如下:将端胺基树枝状聚合物溶于溶解溶剂中,然后缓慢滴加叔胺,室温下搅拌0.5~3h后,缓慢滴加环醚;滴加完毕后将温度升至40~90℃,反应2~12h;蒸发除去溶解溶剂,加入沉淀溶剂沉淀出固体,将固体真空干燥,即得。本发明的树枝状季铵盐页岩抑制剂抑制性能优异,能有效抑制活性泥页岩(高含蒙脱石)的水化分散,在低浓度下即可有效发挥抑制作用。

    聚合物改性碳微球及其制备方法和应用

    公开(公告)号:CN110204667A

    公开(公告)日:2019-09-06

    申请号:CN201910419311.4

    申请日:2019-05-20

    摘要: 本发明涉及油田化学领域,公开了一种聚合物改性碳微球及其制备方法和应用。该方法包括:(1)将碳微球和硅烷偶联剂在第一溶剂中进行第一接触反应,得到硅烷偶联剂改性碳微球;(2)在惰性气体保护下,引发剂和乳化剂存在下,将硅烷偶联剂改性碳微球和单体混合物在第二溶剂中进行第二接触反应,得到聚合物改性碳微球;其中,所述单体混合物包含丙烯酰胺、2-丙烯酰胺-2-甲基丙磺酸、N-乙烯基吡咯烷酮和疏水单体,所述疏水单体为N-烷基丙烯酰胺。本发明提供方法中合成条件容易控制,反应过程相对稳定,容易实现工业化,且制备得到的聚合物改性碳微球作为钻井液降滤失剂使用,具有较好的抗温抗盐性能。

    油基钻井液
    6.
    发明授权

    公开(公告)号:CN108329897B

    公开(公告)日:2019-03-29

    申请号:CN201810068995.3

    申请日:2018-01-24

    摘要: 本发明涉及石油工程油田化学领域,公开了一种油基钻井液,该油基钻井液含有基油、增黏剂、乳化剂和提切剂,其特征在于,所述增黏剂由包括以下步骤的方法制备:(1)在溶剂和催化剂的存在下,环糊精与甲基丙烯酸缩水甘油酯接触进行改性反应,得到改性环糊精;(2)在引发剂和交联剂的存在下,将所述改性环糊精、亲油性单体、橡胶和致孔剂的混合物滴加到含有分散剂的水溶液中进行聚合反应,得到增黏剂。本发明的油基钻井液中的增黏剂增黏效果突出,可用于全油基、油包水和无有机土相油基钻井液中;增黏剂加量少,抗温达200℃;增黏剂采用环糊精作为分子链骨架,易生物降解,有利于环境保护。

    油基钻井液
    8.
    发明公开

    公开(公告)号:CN108329897A

    公开(公告)日:2018-07-27

    申请号:CN201810068995.3

    申请日:2018-01-24

    摘要: 本发明涉及石油工程油田化学领域,公开了一种油基钻井液,该油基钻井液含有基油、增黏剂、乳化剂和提切剂,其特征在于,所述增黏剂由包括以下步骤的方法制备:(1)在溶剂和催化剂的存在下,环糊精与甲基丙烯酸缩水甘油酯接触进行改性反应,得到改性环糊精;(2)在引发剂和交联剂的存在下,将所述改性环糊精、亲油性单体、橡胶和致孔剂的混合物滴加到含有分散剂的水溶液中进行聚合反应,得到增黏剂。本发明的油基钻井液中的增黏剂增黏效果突出,可用于全油基、油包水和无有机土相油基钻井液中;增黏剂加量少,抗温达200℃;增黏剂采用环糊精作为分子链骨架,易生物降解,有利于环境保护。

    水基钻井液用纳米淀粉微球降滤失剂及其制备方法和水基钻井液

    公开(公告)号:CN109880602B

    公开(公告)日:2020-11-13

    申请号:CN201910239105.5

    申请日:2019-03-27

    IPC分类号: C09K8/035 C09K8/24

    摘要: 本发明涉及石油工程油田化学领域,公开了一种水基钻井液用纳米淀粉微球降滤失剂及其制备方法和水基钻井液。其中,在交联剂和引发剂存在的条件下,将含有淀粉的碱性溶液滴加至含有连续相油与乳化剂的连续相中进行反应并且离心分离而得到的;其中,平均粒径为50‑1000nm,溶胀度为200‑600%,总孔隙体积为0.5‑4mL/g,抗温能力≥150℃。本发明采用纳米淀粉微球作为降滤失剂更能有效控制钻井液的滤失,同时,抗温性能显著提高,对钻井液的粘度影响较小,以及对地层微孔隙和裂缝能发挥良好的封堵作用,另外,纳米淀粉微球具有生物可降解、环境友好、来源广泛以及制备工艺简单的优点。