-
公开(公告)号:CN116081617A
公开(公告)日:2023-05-09
申请号:CN202310067190.8
申请日:2023-01-16
申请人: 中国石油大学(华东) , 新疆大学 , 中国石油天然气股份有限公司新疆油田分公司 , 中国地质大学(北京) , 青岛华杰硅碳科技有限公司
IPC分类号: C01B32/225 , C09K8/504 , E21B33/13 , E21B41/00
摘要: 本发明涉及油田化学领域,公开了超深层油气藏湿相可膨胀改性石墨控水体系及其制备方法和应用。所述组合物包括无机强酸、氧化剂、有机酸和膨胀剂;其中,所述氧化剂选自高锰酸盐、重铬酸盐、氯酸盐和高氯酸盐中的至少一种;所述有机酸选自C1‑C5的一元酸;所述膨胀剂含有过硫酸盐和弱酸,所述弱酸选自C2‑C8的二元酸和C2‑C8的多元酸中的至少一种。采用该组合物或方法制备的可膨胀石墨体系,能够在温度高达240℃、矿化度达30万mg/L的超深层油气藏湿相环境中,实现有限程度的膨胀,保证膨胀后的高强度,可以在地层中保持长期稳定,对超深层油气藏窜流通道具有高封堵率,实现超深层储层非均质高效调控。
-
公开(公告)号:CN116081617B
公开(公告)日:2024-07-05
申请号:CN202310067190.8
申请日:2023-01-16
申请人: 中国石油大学(华东) , 新疆大学 , 中国石油天然气股份有限公司新疆油田分公司 , 中国地质大学(北京) , 青岛华杰硅碳科技有限公司
IPC分类号: C01B32/225 , C09K8/504 , E21B33/13 , E21B41/00
摘要: 本发明涉及油田化学领域,公开了超深层油气藏湿相可膨胀改性石墨控水体系及其制备方法和应用。所述组合物包括无机强酸、氧化剂、有机酸和膨胀剂;其中,所述氧化剂选自高锰酸盐、重铬酸盐、氯酸盐和高氯酸盐中的至少一种;所述有机酸选自C1‑C5的一元酸;所述膨胀剂含有过硫酸盐和弱酸,所述弱酸选自C2‑C8的二元酸和C2‑C8的多元酸中的至少一种。采用该组合物或方法制备的可膨胀石墨体系,能够在温度高达240℃、矿化度达30万mg/L的超深层油气藏湿相环境中,实现有限程度的膨胀,保证膨胀后的高强度,可以在地层中保持长期稳定,对超深层油气藏窜流通道具有高封堵率,实现超深层储层非均质高效调控。
-
公开(公告)号:CN116143823A
公开(公告)日:2023-05-23
申请号:CN202310208045.7
申请日:2023-03-06
申请人: 中国石油大学(华东) , 新疆大学
摘要: 本发明涉及油田化学技术领域,公开了一种两亲性纳米石墨高温稳泡剂及其制备方法和耐温三相泡沫体系。所述两亲性纳米石墨高温稳泡剂为改性剂和纳米石墨发生单侧水解缩聚反应得到的产物,其中,所述改性剂水解后含有硅羟基,所述纳米石墨的双侧表面上含有羟基。采用本发明制备方法合成的两亲性纳米石墨高温稳泡剂,能够在保证泡沫良好起泡性的基础上,不可逆吸附至气液界面,形成致密且牢固的强化界面膜,降低泡沫液膜排液速率,延缓气泡歧化过程,大幅度提升泡沫高温稳定性。
-
公开(公告)号:CN115386348B
公开(公告)日:2023-11-14
申请号:CN202211117859.1
申请日:2022-09-14
申请人: 中国石油大学(华东) , 新疆大学 , 电子科技大学
IPC分类号: C09K8/03 , C09K8/035 , C09K8/58 , C09K8/588 , C01B32/23 , E21B43/22 , E21B43/16 , E21B43/20 , C08G83/00
摘要: 本发明属于油田化学技术领域,具体涉及一种超深层油气藏盐诱导自聚结改性纳米石墨及其制备方法和调控体系及其应用方法;该改性纳米石墨颗粒包括纳米氧化石墨颗粒和通过酰胺键共价接枝在纳米氧化石墨颗粒表面的单官能团聚醚胺,所述单官能团聚醚胺结构式如式(I)所示;#imgabs0#其中,R1选自C1‑C5的烷基中的一种;R2为H或C1‑C5的烷基中的一种;n为10‑60的整数。采用本发明所述的改性纳米石墨颗粒构筑的调控体系,用于高温高盐油气藏(例如超深层油气藏储层),能够实现“耐高温、抗高盐、注得进、走得远、控得住”效果。
-
公开(公告)号:CN115386348A
公开(公告)日:2022-11-25
申请号:CN202211117859.1
申请日:2022-09-14
申请人: 中国石油大学(华东) , 新疆大学 , 电子科技大学
IPC分类号: C09K8/03 , C09K8/035 , C09K8/58 , C09K8/588 , C01B32/23 , E21B43/22 , E21B43/16 , E21B43/20 , C08G83/00
摘要: 本发明属于油田化学技术领域,具体涉及一种超深层油气藏盐诱导自聚结改性纳米石墨及其制备方法和调控体系及其应用方法;该改性纳米石墨颗粒包括纳米氧化石墨颗粒和通过酰胺键共价接枝在纳米氧化石墨颗粒表面的单官能团聚醚胺,所述单官能团聚醚胺结构式如式(I)所示;其中,R1选自C1‑C5的烷基中的一种;R2为H或C1‑C5的烷基中的一种;n为10‑60的整数。采用本发明所述的改性纳米石墨颗粒构筑的调控体系,用于高温高盐油气藏(例如超深层油气藏储层),能够实现“耐高温、抗高盐、注得进、走得远、控得住”效果。
-
公开(公告)号:CN116143823B
公开(公告)日:2023-09-19
申请号:CN202310208045.7
申请日:2023-03-06
申请人: 中国石油大学(华东) , 新疆大学
摘要: 本发明涉及油田化学技术领域,公开了一种两亲性纳米石墨高温稳泡剂及其制备方法和耐温三相泡沫体系。所述两亲性纳米石墨高温稳泡剂为改性剂和纳米石墨发生单侧水解缩聚反应得到的产物,其中,所述改性剂水解后含有硅羟基,所述纳米石墨的双侧表面上含有羟基。采用本发明制备方法合成的两亲性纳米石墨高温稳泡剂,能够在保证泡沫良好起泡性的基础上,不可逆吸附至气液界面,形成致密且牢固的强化界面膜,降低泡沫液膜排液速率,延缓气泡歧化过程,大幅度提升泡沫高温稳定性。
-
公开(公告)号:CN115322759A
公开(公告)日:2022-11-11
申请号:CN202211117477.9
申请日:2022-09-14
摘要: 本发明属于油田化学技术领域,具体地,涉及一种强自生长作用的耐温抗盐改性纳米石墨冻胶分散体系和冻胶分散体及其制备方法和应用。该体系含有耐温抗盐功能聚合物、交联剂、螯合剂和改性纳米石墨诱导剂;所述改性纳米石墨诱导剂包括纳米氧化石墨颗粒和通过酰胺键共价接枝在纳米氧化石墨颗粒表面的单官能团聚醚胺,所述单官能团聚醚胺结构式如式(I)所示;其中,R1选自C1‑C5的烷基中的一种;R2为H或C1‑C5的烷基中的一种;n为10‑60的整数。利用本发明所述改性纳米石墨诱导剂诱导强化冻胶分散体和颗粒自身特性之间的自生长作用,形成强黏附作用的聚结体,实现对储层非均质的有效调控。
-
公开(公告)号:CN113484116B
公开(公告)日:2023-07-14
申请号:CN202110805218.4
申请日:2021-07-16
申请人: 中国石油大学(华东) , 中海油能源发展股份有限公司工程技术分公司
IPC分类号: G01N1/28
摘要: 本发明涉及油气田开发领域,公开了一种无损化制备具有缝洞/裂缝结构的人造岩心的方法以及人造岩心。该方法包括:(1)将第一成岩混合物填充至岩心模具内;(2)将与实际油气藏的溶洞和/或裂缝结构相对应的椭球状胶囊体和/或条状体压入第一成岩混合物中,并布设注采井后进行压制处理;(3)将椭球状胶囊体和/或条状体取出,形成缝洞/裂缝结构;(4)将2‑莰酮粉末填充至缝洞/裂缝结构中,再将第二成岩混合物填充至岩心模具内;(5)将成岩混合物压制、固化、检测和浇筑处理,得到人造岩心。采用本发明的方法制备的人造岩心能够同时满足油气藏复杂缝洞/裂缝网络精细模拟和人造岩心无损化制备需求。
-
公开(公告)号:CN110105937B
公开(公告)日:2022-06-17
申请号:CN201910314043.X
申请日:2019-04-18
申请人: 中国石油大学(华东)
IPC分类号: C09K8/512
摘要: 本发明涉及油田化学领域,公开了冻胶分散体用污泥强化本体冻胶体系及其制备方法。该体系含有以下质量分数的组分:污泥0.05%‑0.3%、聚合物0.3%‑0.6%、交联剂0.9%‑1.8%、促凝剂0.05%‑0.5%,配液水96.8‑98.7%。本发明通过加入一种坚硬、耐磨、化学性能稳定的污泥体系,强化常规冻胶分散体所用本体冻胶的性能,加入促凝剂缩短本体冻胶的成冻时间。该发明的本体冻胶体系能够适用于现有冻胶分散体的制备工艺。
-
公开(公告)号:CN115819910B
公开(公告)日:2023-08-11
申请号:CN202211534909.6
申请日:2022-12-01
申请人: 中国石油大学(华东) , 中煤科工西安研究院(集团)有限公司
IPC分类号: C08L33/26 , C09K8/512 , C09K8/516 , C09K8/42 , C09K8/88 , C08L61/14 , C08L61/06 , C08K5/20 , C08K5/18
摘要: 本发明涉及采矿工程技术领域,公开了一种无固相冻胶组合物和无固相冻胶体系及其制备方法及应用。所述无固相冻胶组合物包括各自独立保存的聚丙烯酰胺、交联剂、促凝剂和配液水;其中,所述促凝剂含有伯胺基团‑NH2,且该伯胺基团‑NH2取代或部分取代所述聚丙烯酰胺中的酰胺基。该无固相冻胶成胶液的水动力学半径为纳米尺度,易于进行超低孔超低渗砂岩裂隙深部,扩散半径大。同时,无固相冻胶成胶液的成胶时间可控,且其成胶后,强度大,能够控制裂隙高强度出水。
-
-
-
-
-
-
-
-
-