-
公开(公告)号:CN107102939B
公开(公告)日:2020-07-07
申请号:CN201610983125.X
申请日:2016-11-09
申请人: 中国矿业大学
IPC分类号: G06F11/36
摘要: 本发明提供一种回归测试用例自动分类方法,包括下列步骤:1)基于控制流分析技术从原始的测试用例集合中选择受软件变化影响的测试用例子集;2)在历史软件版本与当前软件版本上分别运行受软件变化影响的测试用例子集与待分类的回归测试用例,并构造分支覆盖向量,进而通过欧氏距离函数计算待分类的测试用例与受软件变化影响的测试用例子集之间的距离;3)根据距离信息,利用基于权重的K近邻算法预测待分类的回归测试用例的类别。本发明解决了目前回归测试背景下依赖手工产生的测试预言对回归测试用例进行分类的自动化效率不高的问题,该方法不需要构造测试预言,能大幅提高回归测试的自动化程度和效率。
-
公开(公告)号:CN107102939A
公开(公告)日:2017-08-29
申请号:CN201610983125.X
申请日:2016-11-09
申请人: 中国矿业大学
IPC分类号: G06F11/36
摘要: 本发明提供一种回归测试用例自动分类方法,包括下列步骤:1)基于控制流分析技术从原始的测试用例集合中选择受软件变化影响的测试用例子集;2)在历史软件版本与当前软件版本上分别运行受软件变化影响的测试用例子集与待分类的回归测试用例,并构造分支覆盖向量,进而通过欧式距离函数计算待分类的测试用例与受软件变化影响的测试用例子集之间的距离;3)根据距离信息,利用基于权重的K近邻算法预测待分类的回归测试用例的类别。本发明解决了目前回归测试背景下依赖手工产生的测试预言对回归测试用例进行分类的自动化效率不高的问题,该方法不需要构造测试预言,能大幅提高回归测试的自动化程度和效率。
-