基于贝叶斯网络的选煤过程安全与质量一体化控制方法

    公开(公告)号:CN116125915B

    公开(公告)日:2024-10-29

    申请号:CN202211489071.3

    申请日:2022-11-25

    Abstract: 本发明提供了一种基于贝叶斯网络的选煤过程安全与质量一体化控制方法,确定选煤过程中的控制变量与目标变量;确定相应的贝叶斯网络节点类型及等级状态;确定贝叶斯网络结构;确定贝叶斯网络参数;建立安全与质量一体化控制贝叶斯网络;根据溢流灰分判断是否发生异常工况,将控制变量初始状态做离散化处理;利用建立的贝叶斯网络进行推理,获取能够消除异常工况的控制变量调整值;利用建立的贝叶斯网络进行推理得到调整后的溢流灰分值;判断异常工况是否消除;利用建立的贝叶斯网络,并结合模拟退火算法,推理得到能使溢流灰分达到最优的控制变量调整值以及最优溢流灰分值。该方法可以给出有效安全控制决策,能有效提升产品煤的质量。

    基于ATL-BMA的非线性工业过程低成本建模方法

    公开(公告)号:CN114035529B

    公开(公告)日:2023-09-08

    申请号:CN202111411517.6

    申请日:2021-11-25

    Abstract: 本发明提供了一种基于ATL‑BMA的非线性工业过程低成本建模方法,选取N组相似旧过程建模数据;收集新过程建模初始数据集;将新旧过程数据分别划分为两部分,并分别进行归一化处理;将N组旧过程数据转换成带有新过程信息的N组旧过程数据,并与相应旧过程数据混合后得到N组混合数据集,然后训练支持向量机模型,得到N个带有新过程信息的旧过程基础模型;将新过程训练集输入变量映射至相似旧过程输入变量运行区间内,并得到这N个预测模型的融合输出;将旧过程SVM模型融合输出和新过程输入数据作为多模型迁移策略的输入数据,训练得到新过程模型。该方法能有效解决复杂工业过程建模成本高、获取的建模数据有限、建模周期长的问题。

    基于ATL-BMA的非线性工业过程低成本建模方法

    公开(公告)号:CN114035529A

    公开(公告)日:2022-02-11

    申请号:CN202111411517.6

    申请日:2021-11-25

    Abstract: 本发明提供了一种基于ATL‑BMA的非线性工业过程低成本建模方法,选取N组相似旧过程建模数据;收集新过程建模初始数据集;将新旧过程数据分别划分为两部分,并分别进行归一化处理;将N组旧过程数据转换成带有新过程信息的N组旧过程数据,并与相应旧过程数据混合后得到N组混合数据集,然后训练支持向量机模型,得到N个带有新过程信息的旧过程基础模型;将新过程训练集输入变量映射至相似旧过程输入变量运行区间内,并得到这N个预测模型的融合输出;将旧过程SVM模型融合输出和新过程输入数据作为多模型迁移策略的输入数据,训练得到新过程模型。该方法能有效解决复杂工业过程建模成本高、获取的建模数据有限、建模周期长的问题。

    基于主动学习和BN的重介质选煤过程安全运行控制方法

    公开(公告)号:CN112415894A

    公开(公告)日:2021-02-26

    申请号:CN202011304778.3

    申请日:2020-11-20

    Abstract: 本发明公开了一种基于主动学习和BN的重介质选煤过程安全运行控制方法,属于工业安全运行控制技术领域。本发明在分析重介质选煤过程中异常工况机制及相应操作方案的基础上,将主动学习引入到贝叶斯网络的结构学习中,减少所需数据量,提高贝叶斯网络结构学习的效率。利用贝叶斯网络能够结合定性专家知识与定量数据信息分析轻重度异常工况的优势,将异常工况的现象变量作为证据信息,通过贝叶斯推理得到不同等级决策变量的后验概率,并遵循后验概率最大的原则获取相应的控制决策,为排除重介质选煤过程中的异常工况提供决策依据。本发明能有效排除重介质选煤过程中的异常工况,为操作人员的安全控制决策提供依据。

    基于贝叶斯网络的选煤过程安全与质量一体化控制方法

    公开(公告)号:CN116125915A

    公开(公告)日:2023-05-16

    申请号:CN202211489071.3

    申请日:2022-11-25

    Abstract: 本发明提供了一种基于贝叶斯网络的选煤过程安全与质量一体化控制方法,确定选煤过程中的控制变量与目标变量;确定相应的贝叶斯网络节点类型及等级状态;确定贝叶斯网络结构;确定贝叶斯网络参数;建立安全与质量一体化控制贝叶斯网络;根据溢流灰分判断是否发生异常工况,将控制变量初始状态做离散化处理;利用建立的贝叶斯网络进行推理,获取能够消除异常工况的控制变量调整值;利用建立的贝叶斯网络进行推理得到调整后的溢流灰分值;判断异常工况是否消除;利用建立的贝叶斯网络,并结合模拟退火算法,推理得到能使溢流灰分达到最优的控制变量调整值以及最优溢流灰分值。该方法可以给出有效安全控制决策,能有效提升产品煤的质量。

    基于主动学习和BN的重介质选煤过程安全运行控制方法

    公开(公告)号:CN112415894B

    公开(公告)日:2021-09-10

    申请号:CN202011304778.3

    申请日:2020-11-20

    Abstract: 本发明公开了一种基于主动学习和BN的重介质选煤过程安全运行控制方法,属于工业安全运行控制技术领域。本发明在分析重介质选煤过程中异常工况机制及相应操作方案的基础上,将主动学习引入到贝叶斯网络的结构学习中,减少所需数据量,提高贝叶斯网络结构学习的效率。利用贝叶斯网络能够结合定性专家知识与定量数据信息分析轻重度异常工况的优势,将异常工况的现象变量作为证据信息,通过贝叶斯推理得到不同等级决策变量的后验概率,并遵循后验概率最大的原则获取相应的控制决策,为排除重介质选煤过程中的异常工况提供决策依据。本发明能有效排除重介质选煤过程中的异常工况,为操作人员的安全控制决策提供依据。

Patent Agency Ranking