-
公开(公告)号:CN111276960B
公开(公告)日:2023-12-26
申请号:CN201910392516.8
申请日:2019-05-13
Applicant: 中国矿业大学
Abstract: 本发明公开了一种光‑储直流微电网系统中储能模块预测控制方法,属于光‑储直流微电网领域,该直流微电网仿真系统由多个光伏阵列、磷酸铁锂电池组、三级可变直流负载和控制模块组成。其中磷酸铁锂电池作为直流微电网的储能模块,在微电网中起着削峰填谷、稳定母线电压的重要作用。通过对磷酸铁锂电池的开路电压、极化电压和电池内阻等实验特性的分析,确定磷酸铁锂电池工作最佳区间。对磷酸铁锂电池荷电状态进行可变步长预测,通过预测数据、当前数据和磷酸铁锂电池最佳工作区间进行预测控制,综合考虑光‑储直流微电网稳定运行和三级可变直流负载切入/切出制定相应的控制策略。本发明确保电池工作在最佳荷电状态区间,延长磷酸铁锂电池的使用寿命,保证直流微电网的稳定性,降低系统的维护成本。
-
公开(公告)号:CN111276960A
公开(公告)日:2020-06-12
申请号:CN201910392516.8
申请日:2019-05-13
Applicant: 中国矿业大学
Abstract: 本发明公开了一种光-储直流微电网系统中储能模块预测控制方法,属于光-储直流微电网领域,该直流微电网仿真系统由多个光伏阵列、磷酸铁锂电池组、三级可变直流负载和控制模块组成。其中磷酸铁锂电池作为直流微电网的储能模块,在微电网中起着削峰填谷、稳定母线电压的重要作用。通过对磷酸铁锂电池的开路电压、极化电压和电池内阻等实验特性的分析,确定磷酸铁锂电池工作最佳区间。对磷酸铁锂电池荷电状态进行可变步长预测,通过预测数据、当前数据和磷酸铁锂电池最佳工作区间进行预测控制,综合考虑光-储直流微电网稳定运行和三级可变直流负载切入/切出制定相应的控制策略。本发明确保电池工作在最佳荷电状态区间,延长磷酸铁锂电池的使用寿命,保证直流微电网的稳定性,降低系统的维护成本。
-
公开(公告)号:CN108416690A
公开(公告)日:2018-08-17
申请号:CN201810054530.2
申请日:2018-01-19
Applicant: 中国矿业大学
Abstract: 本发明公开了一种基于深度LSTM神经网络的电网负荷预测方法,能提高预测精度、步长和实时性,包括以下步骤:根据输入特征数据和负荷数据生成训练样本,其中,输入特征数据包括实验时间的气象信息和是否为工作日的时间类型信息;对训练样本进行处理,并通过LSTM神经网络对处理后的训练样本进行训练以得到LSTM预测模型;通过将待预测时间的气象信息和是否为工作日的时间类型信息输入LSTM预测模型,以对待预测时间内的电网负荷进行预测以得到电网负荷预测结果;对电网负荷预测结果进行分析,并判断电网负荷预测结果是否满足准确度要求;如果判断不满足准确度要求,则获取新的训练样本,并通过新的训练样本对LSTM预测模型进行补充训练,以对LSTM预测模型进行更新。
-
-