一种识别微博异常用户的方法和系统

    公开(公告)号:CN103150374B

    公开(公告)日:2017-02-08

    申请号:CN201310076056.0

    申请日:2013-03-11

    IPC分类号: G06F17/30 G06F17/27

    摘要: 本发明涉及一种识别微博异常用户的方法,包括:获取多个用户微博数据存储入数据库中;根据用户微博数据,以用户行为的时间间隔的统计分布做为用户的行为时间特征,并生成行为时间特征向量和界定参数;计算正常用户行为时间特征向量与待测用户行为时间特征间的Kullback-Leibler距离,将计算出的Kullback-Leibler距离超出界定参数的待测用户判定为异常用户;对异常用户的内容进行关键词抽取和展示。对应该方法,本发明还提供了一种识别微博异常用户的系统。本发明可以快速提取出异常用户的博文内容关键词,可以准确识别营销,广告等垃圾信息发布者,适用于多个微博服务平台检测,且具有准确性高,效率高,适用性广的优点。

    一种识别微博异常用户的方法和系统

    公开(公告)号:CN103150374A

    公开(公告)日:2013-06-12

    申请号:CN201310076056.0

    申请日:2013-03-11

    IPC分类号: G06F17/30 G06F17/27

    摘要: 本发明涉及一种识别微博异常用户的方法,包括:获取多个用户微博数据存储入数据库中;根据用户微博数据,以用户行为的时间间隔的统计分布做为用户的行为时间特征,并生成行为时间特征向量和界定参数;计算正常用户行为时间特征向量与待测用户行为时间特征间的Kullback-Leibler距离,将计算出的Kullback-Leibler距离超出界定参数的待测用户判定为异常用户;对异常用户的内容进行关键词抽取和展示。对应该方法,本发明还提供了一种识别微博异常用户的系统。本发明可以快速提取出异常用户的博文内容关键词,可以准确识别营销,广告等垃圾信息发布者,适用于多个微博服务平台检测,且具有准确性高,效率高,适用性广的优点。