-
公开(公告)号:CN114553496A
公开(公告)日:2022-05-27
申请号:CN202210105191.2
申请日:2022-01-28
Applicant: 中国科学院信息工程研究所
IPC: H04L9/40 , H04L61/4511 , G06K9/62 , G06N3/08
Abstract: 本发明提供了一种基于半监督学习的恶意域名检测方法及装置,所述方法包括:收集域名样本,构建原始样本集;针对每一域名样本抽取典型特征的特征表示;通过恶意域名标注信息,从原始样本集中提取恶意域名样本集;基于原始样本集中各域名样本的孤立分数,构建可信域名样本集;对恶意域名样本集与可信域名样本集并集后,根据是否为恶意域名样本与孤立分数赋予域名样本权重,得到加权训练样本集;基于加权训练样本集中域名样本的特征表示训练分类模型,得到恶意域检测模型;将待检测域名的特征表示输入恶意域名检测模型,得到恶意域名检测结果。本发明的恶意域名检测模型具有自动学习、高效性与普适性等特点,从而提高了恶意域名检测的准确度。
-
公开(公告)号:CN114553496B
公开(公告)日:2022-11-15
申请号:CN202210105191.2
申请日:2022-01-28
Applicant: 中国科学院信息工程研究所
IPC: H04L9/40 , H04L61/4511 , G06K9/62 , G06N3/08
Abstract: 本发明提供了一种基于半监督学习的恶意域名检测方法及装置,所述方法包括:收集域名样本,构建原始样本集;针对每一域名样本抽取典型特征的特征表示;通过恶意域名标注信息,从原始样本集中提取恶意域名样本集;基于原始样本集中各域名样本的孤立分数,构建可信域名样本集;对恶意域名样本集与可信域名样本集并集后,根据是否为恶意域名样本与孤立分数赋予域名样本权重,得到加权训练样本集;基于加权训练样本集中域名样本的特征表示训练分类模型,得到恶意域检测模型;将待检测域名的特征表示输入恶意域名检测模型,得到恶意域名检测结果。本发明的恶意域名检测模型具有自动学习、高效性与普适性等特点,从而提高了恶意域名检测的准确度。
-