一种基于深度学习的异常网络连接检测方法

    公开(公告)号:CN108809948B

    公开(公告)日:2020-07-10

    申请号:CN201810487746.8

    申请日:2018-05-21

    Inventor: 马卫 王利明 杨婧

    Abstract: 本发明涉及一种基于深度学习的异常网络连接检测方法,对每个网络流记录提取网络连接标识字段,并根据网络连接标识字段,对所有网络流记录进行聚合;构建一个基于深度神经网络的网络连接模型;构建一个异常网络连接检测器,使用网络连接模型的输出作为输入,与网络连接模型同步进行训练,得到对网络连接的检测结果;使用数据集对网络连接模型和异常网络连接检测器进行调参优化与误报控制,如果达到预期效果则训练结束并保存网络参数及结构;将待检测网络连接记录输入训练完成的网络连接模型和异常网络连接检测器的组合模型,输出异常网络连接记录。本发明能发现异常网络连接,且不依赖于人工建立的网络连接模型。

    一种基于深度学习的异常网络连接检测方法

    公开(公告)号:CN108809948A

    公开(公告)日:2018-11-13

    申请号:CN201810487746.8

    申请日:2018-05-21

    Inventor: 马卫 王利明 杨婧

    Abstract: 本发明涉及一种基于深度学习的异常网络连接检测方法,对每个网络流记录提取网络连接标识字段,并根据网络连接标识字段,对所有网络流记录进行聚合;构建一个基于深度神经网络的网络连接模型;构建一个异常网络连接检测器,使用网络连接模型的输出作为输入,与网络连接模型同步进行训练,得到对网络连接的检测结果;使用数据集对网络连接模型和异常网络连接检测器进行调参优化与误报控制,如果达到预期效果则训练结束并保存网络参数及结构;将待检测网络连接记录输入训练完成的网络连接模型和异常网络连接检测器的组合模型,输出异常网络连接记录。本发明能发现异常网络连接,且不依赖于人工建立的网络连接模型。

Patent Agency Ranking