-
公开(公告)号:CN111354333A
公开(公告)日:2020-06-30
申请号:CN201811571546.7
申请日:2018-12-21
Applicant: 中国科学院声学研究所 , 北京中科信利技术有限公司
Abstract: 本发明公开了一种基于自注意力的汉语韵律层级预测方法,所述方法包括:对大量无标注文本进行学习获得单字的字向量,利用字向量将待预测的文本转换为字向量序列,将字向量序列输入训练好的韵律层级预测模型,输出文本的词位和韵律层级。本发明的方法利用韵律层级预测模型进行汉语韵律层级预测,在保证预测性能的同时以字粒度的特征作为输入,避免了对于分词系统的依赖及其可能造成的负面影响,该模型利用自注意力机制,直接对文本中任意两个字间的关系建模,可实现并行化计算;并利用额外数据进行预训练提高模型性能,实现对待处理文本各韵律层级同时准确的预测,避免了错误的传递。
-
公开(公告)号:CN111354333B
公开(公告)日:2023-11-10
申请号:CN201811571546.7
申请日:2018-12-21
Applicant: 中国科学院声学研究所 , 北京中科信利技术有限公司
Abstract: 本发明公开了一种基于自注意力的汉语韵律层级预测方法,所述方法包括:对大量无标注文本进行学习获得单字的字向量,利用字向量将待预测的文本转换为字向量序列,将字向量序列输入训练好的韵律层级预测模型,输出文本的词位和韵律层级。本发明的方法利用韵律层级预测模型进行汉语韵律层级预测,在保证预测性能的同时以字粒度的特征作为输入,避免了对于分词系统的依赖及其可能造成的负面影响,该模型利用自注意力机制,直接对文本中任意两个字间的关系建模,可实现并行化计算;并利用额外数据进行预训练提高模型性能,实现对待处理文本各韵律层级同时准确的预测,避免了错误的传递。
-