-
公开(公告)号:CN112331181B
公开(公告)日:2024-07-05
申请号:CN201910694870.6
申请日:2019-07-30
申请人: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
摘要: 本发明属于目标语音提取和自适应技术领域,具体涉及一种基于多说话人条件下目标说话人语音提取方法,该方法具体包括:实时获取多个说话人混合的语音,提取多个说话人混合的语音的频谱;将锚语音输入到预先训练的说话人识别模型中,提取出目标说话人的特征向量;将获取的多个说话人混合的语音的频谱和目标说话人的特征向量输入至预先训练的目标说话人语音提取网络中,获取目标说话人的语音频谱;基于该目标说话人的语音频谱,获取目标说话人的语音。
-
公开(公告)号:CN113326689B
公开(公告)日:2023-08-18
申请号:CN202010128327.2
申请日:2020-02-28
申请人: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC分类号: G06F40/205 , G06F40/211 , G06F18/214 , G06F18/2415 , G06N3/045 , G06N3/092
摘要: 本发明属于数据通信和数据处理技术领域,具体涉及一种基于深度强化学习模型的数据清洗方法,该方法包括:获取待清洗的带标签的数据集;采用预筛选算法,删除待清洗的带标签的数据集中的无内容数据、不在标签集内的标签数据和标签矛盾的数据,获得待分类的数据集;将待分类的数据集输入至预先训练的深度强化学习模型中,获得不同类别的延迟奖励;再根据获得的不同类别的延迟奖励,依据预先训练的深度强化学习模型中的动作集合,丢弃掉有偏数据,保留有效数据,并更新状态列表S,最大化每一类别的延迟奖励值,将每一类别的最大延迟奖励值对应的带标签的训练数据集作为清洗干净的带标签的训练数据集,从而完成数据清洗。
-
公开(公告)号:CN113326689A
公开(公告)日:2021-08-31
申请号:CN202010128327.2
申请日:2020-02-28
申请人: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC分类号: G06F40/205 , G06F40/211 , G06N20/00 , G06K9/62
摘要: 本发明属于数据通信和数据处理技术领域,具体涉及一种基于深度强化学习模型的数据清洗方法,该方法包括:获取待清洗的带标签的数据集;采用预筛选算法,删除待清洗的带标签的数据集中的无内容数据、不在标签集内的标签数据和标签矛盾的数据,获得待分类的数据集;将待分类的数据集输入至预先训练的深度强化学习模型中,获得不同类别的延迟奖励;再根据获得的不同类别的延迟奖励,依据预先训练的深度强化学习模型中的动作集合,丢弃掉有偏数据,保留有效数据,并更新状态列表S,最大化每一类别的延迟奖励值,将每一类别的最大延迟奖励值对应的带标签的训练数据集作为清洗干净的带标签的训练数据集,从而完成数据清洗。
-
公开(公告)号:CN112989839A
公开(公告)日:2021-06-18
申请号:CN201911309397.1
申请日:2019-12-18
申请人: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC分类号: G06F40/30 , G06F40/284
摘要: 本发明属于自然语言处理技术领域,具体涉及一种基于关键词特征嵌入语言模型的意图识别方法,包括:采用前后向最大分词算法,对提取的有效文本的语言信息进行分词,获得不同类别的分词结果;针对获得的不同类别的分词结果,获得不同类别的分词结果对应的候选意图相关的关键词列表;剔除每一种类别的分词结果对应的候选意图相关的关键词列表中的通用高频词和领域无关词,获得每一种类别的分词结果对应的最终关键词表,进而获得不同的关键词特征向量;将获得的每一个关键词特征向量嵌入至预先训练好的语言模型,获得带有关键词特征的有效文本的语音信息;并对其进行编码和分类,获得该有效文本的语言信息的意图识别结果。
-
公开(公告)号:CN112331181A
公开(公告)日:2021-02-05
申请号:CN201910694870.6
申请日:2019-07-30
申请人: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
摘要: 本发明属于目标语音提取和自适应技术领域,具体涉及一种基于多说话人条件下目标说话人语音提取方法,该方法具体包括:实时获取多个说话人混合的语音,提取多个说话人混合的语音的频谱;将锚语音输入到预先训练的说话人识别模型中,提取出目标说话人的特征向量;将获取的多个说话人混合的语音的频谱和目标说话人的特征向量输入至预先训练的目标说话人语音提取网络中,获取目标说话人的语音频谱;基于该目标说话人的语音频谱,获取目标说话人的语音。
-
公开(公告)号:CN110119648A
公开(公告)日:2019-08-13
申请号:CN201810111564.0
申请日:2018-02-05
申请人: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
摘要: 本发明公开了一种基于光学字符识别的传真图像分类方法,所述方法包括:步骤1)对扫描得到的传真图像进行噪声消除;步骤2)对噪声消除后的传真图像进行二值化处理;步骤3)对步骤2)得到的二值化图像进行仿射变换校准文本;步骤4)利用OCR方法对步骤3)处理后的传真图像进行识别,得到编码为UTF-8的输出字符串和转写置信度;步骤5)对字符串进行关键词正则匹配,得到传真图像的分类。本发明的方法利用频谱噪声消除和灰度图像二值化的预处理,在满足实时性要求的前提下提升了电子扫描得到的传真图像的质量;使传真图像能够使用基于OCR的分类方法,由此实现了传真图像的自动化分类。
-
公开(公告)号:CN113077785A
公开(公告)日:2021-07-06
申请号:CN201911300918.7
申请日:2019-12-17
申请人: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
摘要: 本发明属于网络通信技术领域,具体涉及一种端到端的多语言连续语音流语音内容识别方法,该方法包括:将待识别的语音频谱特征输入至预先构建的基于深度神经网络的段级别语种分类模型,提取语句级别语种状态后验概率分布向量;将每一种语言种类的待识别的语音频谱特征序列和语句级别语种状态后验概率分布向量输入至预先构建的多语言语音识别模型,输出对应语言种类的语音识别结果。
-
公开(公告)号:CN108629412A
公开(公告)日:2018-10-09
申请号:CN201710152727.5
申请日:2017-03-15
申请人: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC分类号: G06N3/08
摘要: 本发明提供了一种基于无网格最大互信息准则的神经网络训练加速方法,本发明的方法通过对无网格最大互信息准则(LFMMI准则)下的神经网络CE准则输出端进行低秩转换,将原有的高秩矩阵模块拆分为两个低秩矩阵模块,拆分后的两个低秩矩阵模块内的子阵相乘最后的维度和之前的全连接矩阵一致,在保证神经网络CE准则输出端总体维度不变的情况下,利用改造后的低维度子阵进行神经网络训练,从而简化了运算结构,使神经网络的输出层前向计算和后向计算占据训练时间比例明显减小,加快了神经网络的训练。
-
公开(公告)号:CN106296420A
公开(公告)日:2017-01-04
申请号:CN201510272423.3
申请日:2015-05-25
申请人: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
摘要: 本发明涉及一种社区发现方法,包括:从待发现社区的网络中选取若干个种子节点,由所述种子节点出发进行局部扩张,得到网络中所要发现的社区。本发明的方法只需要从种子节点进行局部扩张,极大地降低了算法复杂度,以便应用于大规模的网络中。
-
公开(公告)号:CN113077785B
公开(公告)日:2022-07-12
申请号:CN201911300918.7
申请日:2019-12-17
申请人: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
摘要: 本发明属于网络通信技术领域,具体涉及一种端到端的多语言连续语音流语音内容识别方法,该方法包括:将待识别的语音频谱特征输入至预先构建的基于深度神经网络的段级别语种分类模型,提取语句级别语种状态后验概率分布向量;将每一种语言种类的待识别的语音频谱特征序列和语句级别语种状态后验概率分布向量输入至预先构建的多语言语音识别模型,输出对应语言种类的语音识别结果。
-
-
-
-
-
-
-
-
-