-
公开(公告)号:CN107305767B
公开(公告)日:2020-03-17
申请号:CN201610236672.1
申请日:2016-04-15
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L15/00 , G10L15/04 , G10L15/10 , G06F40/263
Abstract: 本发明提供了一种应用于语种识别的短时语音时长扩展方法,所述方法包括:对于一条时长较短的待识别语音,首先根据其语音时长确定生成的不同语速语音的数量n;然后根据合成帧移值及n个语速变化率计算生成语音的n个分解帧移;根据分解帧移和合成帧移生成n个不同语速的语音,将n个不同语速的语音与原语音拼接起来,生成一个时长加长的语音。不同语速的语音的语种信息具有互补性,本发明所提出的方法可以显著提升短时语音的语种识别性能。
-
公开(公告)号:CN104992708B
公开(公告)日:2018-07-24
申请号:CN201510236568.8
申请日:2015-05-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
Abstract: 本发明涉及一种短时特定音频检测模型生成方法,包括:对训练语音数据进行特征提取;其中,所述训练语音数据包括非特定音频数据与特定音频数据;用训练语音数据的特征,进行通用背景模型的训练;由训练语音数据中某一类特定音频数据的特征,根据通用背景模型中自适应地得到该类特定音频数据的模型;重复这一操作,直至得到训练语音数据中所有类特定音频数据的模型。本发明还提供了一种短时特定音频检测方法,该方法通过模型打分进行特定音频的检测。这种方法不仅可以很好地解决特定音频模型训练数据不充足的问题,还可以一定程度的对输入数据的背景噪声进行抑制。
-
公开(公告)号:CN108305616A
公开(公告)日:2018-07-20
申请号:CN201810039421.3
申请日:2018-01-16
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
Abstract: 本发明涉及一种基于长短时特征提取的音频场景识别方法及装置,该方法包括,对输入待识别音频信号进行预处理;对经过预处理后的所述待识别音频信号,进行短时音频特征提取,再进行长时音频特征提取,将所述待识别音频信号的所述长、短时音频特征联合,输入分类模型及其融合模型,进行分类和识别,输出音频场景的识别标签。本发明在常规短时特征提取的基础之上,进一步联合音频场景长时特征,可以表征复杂的音频场景信息,输入分类模型及其融合模型,进行分类和识别,输出音频场景的识别标签,其鲁棒性更强、区分性更好,且能够在更大程度上表征场景数据的整体特性,识别效率高、稳定性强。
-
公开(公告)号:CN106297769A
公开(公告)日:2017-01-04
申请号:CN201510280471.7
申请日:2015-05-27
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
IPC: G10L15/02
Abstract: 本发明涉及一种应用于语种识别的鉴别性特征提取方法,包括:在训练阶段为训练集中的语音数据的帧级的音素后验概率特征向量计算F比指标,所述F比指标反映了音素后验概率特征向量中每一维对语种鉴别性的贡献大小;在测试阶段为待测试的语音提取音素后验概率特征向量,并为所提取的音素后验概率特征向量根据F比指标做特征加权。
-
公开(公告)号:CN104992708A
公开(公告)日:2015-10-21
申请号:CN201510236568.8
申请日:2015-05-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
Abstract: 本发明涉及一种短时特定音频检测模型生成方法,包括:对训练语音数据进行特征提取;其中,所述训练语音数据包括非特定音频数据与特定音频数据;用训练语音数据的特征,进行通用背景模型的训练;由训练语音数据中某一类特定音频数据的特征,根据通用背景模型中自适应地得到该类特定音频数据的模型;重复这一操作,直至得到训练语音数据中所有类特定音频数据的模型。本发明还提供了一种短时特定音频检测方法,该方法通过模型打分进行特定音频的检测。这种方法不仅可以很好地解决特定音频模型训练数据不充足的问题,还可以一定程度的对输入数据的背景噪声进行抑制。
-
公开(公告)号:CN109859742B
公开(公告)日:2021-04-09
申请号:CN201910015449.8
申请日:2019-01-08
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
Abstract: 本发明提供一种说话人分段聚类方法及装置,以解决相关技术中处理短时说话人语音时,性能下降导致说话人聚类效果较差的问题。该方法包括:将待聚类语音划分为多个子语音段;通过权重联合概率线性判别分析WT‑PLDA模型对基于划分得到的各子语音段的I‑vector提取出各子语音段的特征信息W‑vector,所述WT‑PLDA模型的模型参数至少包括:均值向量、说话人子空间的投影矩阵、说话人因子的隐藏变量以及残差因子;通过概率线性判别分析PLDA根据划分后多个子语音段的所述W‑vector对该多个子语音段循环进行多次聚类,直至所述多个子语音段被聚类为两类。本发明提高了说话人的聚类效果。
-
公开(公告)号:CN106297819B
公开(公告)日:2019-09-06
申请号:CN201510272422.9
申请日:2015-05-25
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
IPC: G10L21/0224
Abstract: 本发明涉及一种应用于说话人识别的噪声消除方法,包括:利用加噪后语音的声学谱特征时域上相邻的多帧特征来消除特征中噪声的影响。本发明的方法实现了在特征层消除噪声影响;不需要增加额外的训练数据;在系统速度不会大幅降低的情况下可以明显提高系统在在噪声环境下的性能。
-
公开(公告)号:CN109859742A
公开(公告)日:2019-06-07
申请号:CN201910015449.8
申请日:2019-01-08
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
Abstract: 本发明提供一种说话人分段聚类方法及装置,以解决相关技术中处理短时说话人语音时,性能下降导致说话人聚类效果较差的问题。该方法包括:将待聚类语音划分为多个子语音段;通过权重联合概率线性判别分析WT-PLDA模型对基于划分得到的各子语音段的I-vector提取出各子语音段的特征信息W-vector,所述WT-PLDA模型的模型参数至少包括:均值向量、说话人子空间的投影矩阵、说话人因子的隐藏变量以及残差因子;通过概率线性判别分析PLDA根据划分后多个子语音段的所述W-vector对该多个子语音段循环进行多次聚类,直至所述多个子语音段被聚类为两类。本发明提高了说话人的聚类效果。
-
公开(公告)号:CN107305767A
公开(公告)日:2017-10-31
申请号:CN201610236672.1
申请日:2016-04-15
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明提供了一种应用于语种识别的短时语音时长扩展方法,所述方法包括:对于一条时长较短的待识别语音,首先根据其语音时长确定生成的不同语速语音的数量n;然后根据合成帧移值及n个语速变化率计算生成语音的n个分解帧移;根据分解帧移和合成帧移生成n个不同语速的语音,将n个不同语速的语音与原语音拼接起来,生成一个时长加长的语音。不同语速的语音的语种信息具有互补性,本发明所提出的方法可以显著提升短时语音的语种识别性能。
-
公开(公告)号:CN106297819A
公开(公告)日:2017-01-04
申请号:CN201510272422.9
申请日:2015-05-25
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
IPC: G10L21/0224
Abstract: 本发明涉及一种应用于说话人识别的噪声消除方法,包括:利用加噪后语音的声学谱特征时域上相邻的多帧特征来消除特征中噪声的影响。本发明的方法实现了在特征层消除噪声影响;不需要增加额外的训练数据;在系统速度不会大幅降低的情况下可以明显提高系统在噪声环境下的性能。
-
-
-
-
-
-
-
-
-