-
公开(公告)号:CN117152733B
公开(公告)日:2024-06-21
申请号:CN202310843604.1
申请日:2023-07-10
申请人: 中国地质大学(武汉) , 中国科学院武汉岩土力学研究所
IPC分类号: G06V20/64 , G06T3/06 , G06T17/00 , G06T7/40 , G06T15/04 , G06T5/90 , G06N3/0464 , G06N3/0475 , G06N3/0455 , G06V10/24
摘要: 本申请实施例提供的一种地质材料材质识别方法、系统及可读存储介质,该方法包括获取目标物体的多角度点云数据,并基于多角度点云数据进行三维重建,得到目标三维模型;获取目标物体的初始纹理图像,并对初始纹理图像进行增强处理,得到目标纹理图像;将目标纹理图像渲染到目标三维模型上,得到带有纹理属性的实景三维模型;对实景三维模型进行二维投影,并对所得的二维图像进行时域矫正、以及频域矫正,得到目标矫正图像;将目标矫正图像输入到训练好的目标参数提取模块中进行地质材料材质的提取,得到相应的识别结果。该方法的实施能够提高地质材料材质的识别精准度。
-
公开(公告)号:CN117111173A
公开(公告)日:2023-11-24
申请号:CN202310845063.6
申请日:2023-07-10
申请人: 中国地质大学(武汉) , 中国科学院武汉岩土力学研究所
摘要: 本发明提供一种深部地层跟管随钻内窥探测装置及探测装置方法,该装置包括智能钻杆、通缆钻杆、信号放大短节、地面控制器以及地面控制终端,智能钻杆下端连接跟管钻头,智能探杆上端连接所述通缆钻杆,通缆钻杆相互连接至地面;信号放大短节设置在通缆钻杆之间;通缆钻杆最上端连接地质钻机,地质钻机用于驱动跟管钻头以及上述智能钻杆、通缆钻杆、信号放大短节形成的组合转动,使智能钻杆钻入目标空区。本发明的有益效果为:该装置及方法采用结合视频‑激光‑声呐相协同的智能探杆,搭载于地质钻机钻头后方,以跟管钻进方式进入目标空区,实现“钻+探”一体化实时内窥操作;通过激光扫描和声呐联合作业,对目标空区内部结构进行重构成像。
-
公开(公告)号:CN117056852A
公开(公告)日:2023-11-14
申请号:CN202310845089.0
申请日:2023-07-10
申请人: 中国地质大学(武汉) , 中国科学院武汉岩土力学研究所
摘要: 本发明公开了深部地层探测“地下+地面”融合数据处理方法,包括采用智能探杆进行地下多源数据采集,处理为原始数字信号,采用地下存储器保存原始数字信号,采用地表设备获取连续深度数据;对原始数字信号进行高码率或低码率压缩,并调制;经功率驱动以电力载波形式在通缆钻杆中传输后输出,或先进入第一节通缆钻杆中传输,而后在中继短节复采,再发射进入第二节通缆钻杆后输出;当传输线路断路,将数据与时间的对应数据以及探测深度与时间之间的对应数据进行数据同步和数据融合,最后和传输线路的输出数据作为最后的数据输出。可采集数据量大,种类多,可视性强,能更加直观得反应地底的情况。
-
公开(公告)号:CN117027661A
公开(公告)日:2023-11-10
申请号:CN202310856540.9
申请日:2023-07-12
申请人: 中国地质大学(武汉) , 中国科学院武汉岩土力学研究所
摘要: 本发明涉及钻探设备技术领域,尤其涉及一种基于开合式钻具的深部空区探测系统及方法,包括开合式钻头和智能探杆,所述开合式钻头包括钻头体和中心活动刀翼,所述钻头体为圆杆结构,其具有切削部和连接部,其外壁上设有扩孔刀翼,其内壁设有限位装置,所述中心活动刀翼包括第一连接座,所述第一连接座为条状结构,其转动安装在所述钻头体的切削部,并可沿转向轴转动至与所述钻头体的轴向平行或垂直,所述钻头体的端部设有与所述第一连接座相适配的固定槽,钻头可开合、扩孔、跟管钻进与提钻,所述智能探杆内设有定位单元和探测单元。本发明的探测系统,可实现精确定位、多传感器探测、有缆高速传输、开合式钻头随钻探测。
-
公开(公告)号:CN116993636A
公开(公告)日:2023-11-03
申请号:CN202310843877.6
申请日:2023-07-10
申请人: 中国地质大学(武汉) , 中国科学院武汉岩土力学研究所
摘要: 本发明公开了一种地下低照度深部地层空区图像增强方法,包括:利用多帧堆栈技术处理图像,得到高分辨率图像,将图像从空间域转化为频率域,并通过CNN对图像进行重建和增强,得到增强图像M1;分解高分辨率图像,得到红色、绿色和蓝色的RGB分量图像,将图像由RGB空间转换至HSV空间,对HSV空间图像进行对比度增强得到增强图像M2;对HSV空间图像通过CNN增强,得到增强图像M3;对RGB分量图像通过CNN增强,得到增强图像M4;对增强图像M1、M2、M3、M4进行合并,使用深度学习方法获得增强图像M1、M2、M3、M4的加权平均系数,得到最终增强的图像。本发明的加权合并后的图像涵盖了多种增强方法的优点,能够有效提高图像对比度和品质,全面展示图像的特征。
-
公开(公告)号:CN117152330B
公开(公告)日:2024-05-28
申请号:CN202310843903.5
申请日:2023-07-10
申请人: 中国地质大学(武汉) , 中国科学院武汉岩土力学研究所
摘要: 本发明公开了一种基于深度学习的点云3D模型贴图方法,通过卷积神经网络提取图像数据特征;利用PointNet点云处理网络提取点云数据特征,并采用三角网格构建点云数据的3D模型;并将3D模型和图像进行时间和空间上的对齐;将对齐后的3D模型和图像进行投影映射,将点云数据中的位置信息与图像的纹理信息进行叠加,获得融合图像1;将点云数据和图像数据的特征进行融合,得到特征融合的融合图像2;将融合图像1和融合图像2进行叠加,通过卷积神经网络获得叠加权重,生成带贴图3D模型。相比于传统贴图方法,本发明的方案在地下暗光环境中也能得到很好的成像效果,并且能在保持成像准确度的基础上,更加凸显3D点云和图像的特征,以更好得满足工程需求。
-
公开(公告)号:CN117156309B
公开(公告)日:2024-04-05
申请号:CN202310843964.1
申请日:2023-07-10
申请人: 中国地质大学(武汉) , 中国科学院武汉岩土力学研究所
摘要: 本发明提供了一种地球深部探测信号中继短节结构及电路,包括:电触柱、线圈组件、外壳、磁耦合通信电路板、中继电路板、储能电容和六芯通信电缆;外壳的一端嵌合电触柱、连接线圈组件,通过与其他接头上的电触柱相连,形成连通导体传输电流,所传输的电流经过相邻的线圈组件,根据电感效应,将电信号转化为磁场,线圈组件内嵌的导线,又将磁信号转化为电信号,通过这一过程实现了不同钻杆间无线方式的电信号传输;线圈组件远离外壳的一端连接磁耦合通信电路板,该磁耦合通信电路板控制上述过程中信号的传输。本发明的有益效果是:信号更加稳定精确,能够较早地发现、处理钻探过程中发现的不良地质情况,减少钻井工艺中的损失。
-
公开(公告)号:CN117052377B
公开(公告)日:2024-03-01
申请号:CN202310845159.2
申请日:2023-07-10
申请人: 中国地质大学(武汉) , 中国科学院武汉岩土力学研究所
摘要: 本发明提供一种无接触式探测信号随钻采集与传输装置和方法,包括依次连接的水辫、无接触式采集探头和智能探杆,无接触式采集探头和智能探杆的连接端均安装有电磁耦合连接的通信接头;无接触式采集探头中采集探头主控电路板设于通信接头内并与其连接,电力发送装置在探头外壳内与采集探头主控电路板连接,铠装线缆的一端与通信接头连接,另一端与水辫连接;智能探杆中电力接收线圈安装于杆体内与电力发送装置连接,多通道线缆依次连接电力接收线圈、控制芯片、通信线缆和传感器组,控制芯片和传感器组设于固定槽内,数据接头的两端分别与通信线缆和通信接头连接,通过电磁耦合原理和铠装线缆传输可以保证高效、多通道的传输能力。
-
公开(公告)号:CN117058332B
公开(公告)日:2024-01-30
申请号:CN202310843600.3
申请日:2023-07-10
申请人: 中国地质大学(武汉) , 中国科学院武汉岩土力学研究所
IPC分类号: G06T17/05 , G06T17/20 , G06T15/04 , G06T15/06 , G06V10/75 , G06V10/82 , G06V10/54 , G06V10/46 , G06V20/40
摘要: 本申请实施例提供的一种地下空区三维成像方法、系统及可读存储介质,该方法包括获取地下空区的空区视频图像和空区点云数据;确定姿态变换矩阵,基于姿态变换矩阵将空区视频图像和空区点云数据进行对齐;基于空区视频图像进行材质纹理的识别,得到材质纹理信息;对空区点云数据进行三角网格划分,形成初始空区三维模型;将材质纹理信息映射到空区三维模型,形成带有材质纹理属性的目标空区三维模型;基于所属的材质纹理属性,计算目标空区三维模型的BRDF;模拟全局光照,并基于所求的BRDF构建渲染方程;设定从视点发射光线,并基于渲染方程进行光线追踪,以获得高亮度的地下空区实景
-
公开(公告)号:CN117145461A
公开(公告)日:2023-12-01
申请号:CN202310845122.X
申请日:2023-07-10
申请人: 中国地质大学(武汉) , 中国科学院武汉岩土力学研究所
摘要: 本发明提供一种随钻有线式通信接头、水辫和中继装置以及通信方法。其中通信接头包括接头和磁通信头,接头包括内设有舱体的杆体,磁通信头安装于舱体内;磁通信头包括外壳、电触柱、线圈组合、磁耦合通信电路板、储能电容和多芯通信电缆;通信接头相互连接组成集成化电力与数据传输的通道。水辫包括主轴、水辫壳和电滑环,其中主轴内贯设有通道并安装有通信接头,可与高速旋转的钻杆连接从而传输电力和数据。中继传输装置及通信方法中通过在钻杆和水辫内安装的通信接头相互连接传输电力和数据,经过中继装置放大、去噪、存储,并利用多芯通信电缆实现高效的电力和数据并行传输,从而实现随钻有线式井下通讯。
-
-
-
-
-
-
-
-
-