一种基于HSI颜色空间的棉花杂质高速实时检测方法

    公开(公告)号:CN101398392B

    公开(公告)日:2011-08-10

    申请号:CN200710122473.9

    申请日:2007-09-26

    IPC分类号: G01N21/95

    摘要: 本发明一种基于色调、饱和度、灰度HSI颜色空间的棉花杂质高速实时检测方法:对采集棉花图像信息进行图像格式转换,获得HSI图像并进行操作判别学习训练过程和杂质检测过程;对棉花图像信息和背景图像信息进行联合自学习;对棉花杂质信息进行识别,输出棉花真正杂质点定位结果。采用三维查找表3D-LUT技术,快速获得HSI图像;利用自学习过程获得的参数进行杂质的识别,并且利用彩色运动补偿技术,对杂质点进行再次认证。本发明可以在10ms内完成80线棉流图像的采集、图像格式转换、杂质的检测和定位等全部过程。在棉流速度18m/s,杂质大小为2×2mm2的情况下,杂质识别正确率可达到95.4%。

    基于曲线均值标准差描述子的图像曲线特征匹配方法

    公开(公告)号:CN101488223A

    公开(公告)日:2009-07-22

    申请号:CN200810056260.5

    申请日:2008-01-16

    IPC分类号: G06T7/00

    摘要: 本发明基于曲线均值标准差描述子的图像曲线特征匹配方法,包括:拍摄待匹配场景的两幅或多幅图像;提取图像中的曲线特征;对曲线邻域进行划分分块,获取曲线上每一点的支撑区域的描述子向量;利用曲线上每一点支撑区域的描述子向量构造曲线的描述矩阵;计算曲线的描述矩阵的列向量的均值向量和标准差向量;分别对均值向量和标准差向量进行归一化并合并成一个向量;限制向量中每一维的最大值并重新进行整体归一化;利用所得的曲线描述子进行曲线匹配。本发明克服了困扰曲线匹配研究不同长度的曲线的统一描述问题,本发明具有完全基于图像内容,不需要对摄像机参数进行标定或其它已知条件,匹配过程不需要人机交互,完全基于图像内容自动完成。

    基于曲线均值标准差描述子的图像曲线特征匹配方法

    公开(公告)号:CN101488223B

    公开(公告)日:2012-03-28

    申请号:CN200810056260.5

    申请日:2008-01-16

    IPC分类号: G06T7/00

    摘要: 本发明基于曲线均值标准差描述子的图像曲线特征匹配方法,包括:拍摄待匹配场景的两幅或多幅图像;提取图像中的曲线特征;对曲线邻域进行划分分块,获取曲线上每一点的支撑区域的描述子向量;利用曲线上每一点支撑区域的描述子向量构造曲线的描述矩阵;计算曲线的描述矩阵的列向量的均值向量和标准差向量;分别对均值向量和标准差向量进行归一化并合并成一个向量;限制向量中每一维的最大值并重新进行整体归一化;利用所得的曲线描述子进行曲线匹配。本发明克服了困扰曲线匹配研究不同长度的曲线的统一描述问题,本发明具有完全基于图像内容,不需要对摄像机参数进行标定或其它已知条件,匹配过程不需要人机交互,完全基于图像内容自动完成。

    一种基于HSI颜色空间的棉花杂质高速实时检测方法

    公开(公告)号:CN101398392A

    公开(公告)日:2009-04-01

    申请号:CN200710122473.9

    申请日:2007-09-26

    IPC分类号: G01N21/95

    摘要: 本发明一种基于色调、饱和度、灰度HSI颜色空间的棉花杂质高速实时检测方法:对采集棉花图像信息进行图像格式转换,获得HSI图像并进行操作判别学习训练过程和杂质检测过程;对棉花图像信息和背景图像信息进行联合自学习;对棉花杂质信息进行识别,输出棉花真正杂质点定位结果。采用三维查找表3D-LUT技术,快速获得HSI图像;利用自学习过程获得的参数进行杂质的识别,并且利用彩色运动补偿技术,对杂质点进行再次认证。本发明可以在10ms内完成80线棉流图像的采集、图像格式转换、杂质的检测和定位等全部过程。在棉流速度18m/s,杂质大小为2×2mm2的情况下,杂质识别正确率可达到95.4%。