-
公开(公告)号:CN108334496A
公开(公告)日:2018-07-27
申请号:CN201810092029.5
申请日:2018-01-30
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及人工智能领域,具体涉及一种用于特定领域的人机对话理解方法与系统及相关设备,目的在于提高对话理解的准确率。本发明人机对话系统的对话理解方法,接收用户当前输入词并将该词映射到向量空间;使用语义表示层,将历史词向量、语义标注信息、意图类别信息表示成向量;使用语义标注层获得当前词的语义标签;使用意图识别层获得当前词的意图类别。在模型训练时,引入了额外的词性信息,使用词性预测层预测下一个输入词的词性,通过对语义标注、意图识别、词性预测三个任务进行联合处理,充分利用三个任务间共享的语义信息,并使其互相提升;本发明逻辑清晰、效率高、准确率高,妥善解决了现有人机对话系统无法有效进行实时对话理解的技术问题。
-
公开(公告)号:CN108334496B
公开(公告)日:2020-06-12
申请号:CN201810092029.5
申请日:2018-01-30
Applicant: 中国科学院自动化研究所
IPC: G06F40/30 , G06F16/332 , G06N3/04 , G06N3/08
Abstract: 本发明涉及人工智能领域,具体涉及一种用于特定领域的人机对话理解方法与系统及相关设备,目的在于提高对话理解的准确率。本发明人机对话系统的对话理解方法,接收用户当前输入词并将该词映射到向量空间;使用语义表示层,将历史词向量、语义标注信息、意图类别信息表示成向量;使用语义标注层获得当前词的语义标签;使用意图识别层获得当前词的意图类别。在模型训练时,引入了额外的词性信息,使用词性预测层预测下一个输入词的词性,通过对语义标注、意图识别、词性预测三个任务进行联合处理,充分利用三个任务间共享的语义信息,并使其互相提升;本发明逻辑清晰、效率高、准确率高,妥善解决了现有人机对话系统无法有效进行实时对话理解的技术问题。
-