基于元学习的厄尔尼诺极端天气预警方法及装置

    公开(公告)号:CN115113303A

    公开(公告)日:2022-09-27

    申请号:CN202210703932.7

    申请日:2022-06-21

    摘要: 本发明公开了一种基于元学习的厄尔尼诺极端天气预警方法及装置,包括:设计全局引导的注意力机制引导低层特征的学习,并利用互信息约束加强不同层级海洋特征的表征一致性,将多层级海洋特征拼接为全局特征,利用该全局特征对厄尔尼诺指数进行预测;对每个元训练任务,利用元学习算法对多层级厄尔尼诺指数预测网络进行参数训练,得到能够处理不同时期数据,且有适应能力的网络参数;以元训练阶段优化好的参数作为初始化参数,在SODA数据集上对多层级厄尔尼诺指数预测网络进行进一步微调;在GODAS数据集上进行最终厄尔尼诺指数预测;建立最终厄尔尼诺指数与降雨量的映射函数,当预测降雨量达到一定阈值时进行预警并提前进行汛期防治工作。