-
公开(公告)号:CN117407635B
公开(公告)日:2024-05-14
申请号:CN202311358576.0
申请日:2023-10-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F17/11 , G06F30/20 , G06F119/08 , G06F113/08
Abstract: 本发明公开了一种基于结霜相似律的平板结霜厚度预测方法,涉及结霜行为预测领域,包括:基于霜层厚度和霜层平衡厚度建立无量纲霜层厚度的第一计算公式;基于结霜时间和结霜特征时间建立无量纲结霜时间的第二计算公式;将第一计算公式转化为第一关系式;将第二计算公式转化为第二关系式;获得第一低温平板在第一来流速度和第一低温平板长度下的霜层生长情况;利用第一关系式和第二关系式,基于第一低温平板在第一来流速度和第一低温平板长度下的霜层生长情况,预测第二低温平板在第二来流速度和第二低温平板长度条件下第二时刻的霜层厚度,本发明目的为减少低温平板上霜层厚度预测的计算量,提高预测效率。
-
公开(公告)号:CN116611173A
公开(公告)日:2023-08-18
申请号:CN202310869193.3
申请日:2023-07-17
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F113/08 , G06F119/08 , G06F119/14 , G06F119/12
Abstract: 本发明公开了一种多层级自适应耦合时间步长的飞行器累积热变形计算方法,包括以下步骤:S1、针对固定飞行器结构及材料,给定其长航时巡航计算状态,划分好飞行器流场计算网格G1和结构场计算网格R1;S2、进行t=0时刻气动力/热环境数据的计算求解;S3、在气动力/热环境数据基础上结合热壁热流修正方法开展第一层级的累积热变形计算,获得累积热变形的宏观变化特征;S4、根据该宏观变化特征,在温升变化剧烈的区域选择小的时间步,在温升变化缓慢的区域选择大的时间步开展累积热变形计算,获得新的热变形特征;S5、根据新的温升特征重新进行耦合时间步的选取,重复迭代开展高精度的累积热变形计算,直至热变形计算收敛。
-
公开(公告)号:CN115620847B
公开(公告)日:2023-03-28
申请号:CN202211555376.X
申请日:2022-12-06
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种硅基复合材料烧蚀形貌的确定方法及相关装置,应用于硅基材料烧蚀计算技术领域,包括获取硅基复合材料中成分的质量分数,以及热环境参数;根据质量分数、热环境参数、以及通用反应方程确定实际反应方程;当实际反应方程表征在烧蚀过程中硅基复合材料表面存在液态层时,根据包括表征液态层参与反应的实际反应方程建立质量守恒方程、能量守恒方程以及动量守恒方程;根据质量守恒方程、能量守恒方程以及动量守恒方程建立封闭方程组;根据封闭方程组确定硅基复合材料的烧蚀外形,可以准确对硅基复合材料的烧蚀形貌进行确定。
-
公开(公告)号:CN113158339B
公开(公告)日:2022-10-18
申请号:CN202110408433.0
申请日:2021-04-16
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种针对SST湍流模型的湍流长度尺度修正方法,本修正方法以无量纲速度散度λl的值为基本自变量来确定修正源项的大小,通过控制函数tanh(h2(η‑h3))‑1实现了对修正源项作用区域的控制。本发明方法不依赖于壁面距离这一参数,而是根据流场中速度散度的强度大小来确定修正源项的大小,可以有效避免现有代数方法的不足。
-
公开(公告)号:CN104568213B
公开(公告)日:2017-11-28
申请号:CN201510002336.6
申请日:2015-01-05
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于电磁超声的温度场非接触式探测系统,包括微控制器、发射电路、电磁超声探头、接收开关、声学信号采集模块、回波数据处理模块和显示模块;所述微控制器的输出端与发射电路的输入端连接,所述发射电路的输出端与电磁超声探头的输入端连接,所述电磁超声探头的输出端与接收开关的输入端连接,所述接收开关的一个输出端与微控制器的输入端连接,所述接收开关的另一个输出端与声学信号采集模块的输入端连接,所述声学信号采集模块的输出端与回波数据处理模块的输入端连接,所述回波数据处理模块的输出端与显示模块的输入端连接。达到快速准确地获得物体表面温度和内部非均匀温度场的目的。
-
公开(公告)号:CN104568213A
公开(公告)日:2015-04-29
申请号:CN201510002336.6
申请日:2015-01-05
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于电磁超声的温度场非接触式探测系统,包括微控制器、发射电路、电磁超声探头、接收开关、声学信号采集模块、回波数据处理模块和显示模块;所述微控制器的输出端与发射电路的输入端连接,所述发射电路的输出端与电磁超声探头的输入端连接,所述电磁超声探头的输出端与接收开关的输入端连接,所述接收开关的一个输出端与微控制器的输入端连接,所述接收开关的另一个输出端与声学信号采集模块的输入端连接,所述声学信号采集模块的输出端与回波数据处理模块的输入端连接,所述回波数据处理模块的输出端与显示模块的输入端连接。达到快速准确地获得物体表面温度和内部非均匀温度场的目的。
-
公开(公告)号:CN117408054B
公开(公告)日:2024-04-12
申请号:CN202311358640.5
申请日:2023-10-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F17/11 , G06F119/08 , G06F113/08
Abstract: 本发明公开了一种基于结霜相似律的圆管结霜平均厚度预测方法,涉及结霜行为预测领域,所述方法包括:步骤1:对强对流条件下低温圆管干模态结霜行为进行模拟,获得强对流条件下不同低温圆管干模态结霜相似关系;步骤2:获得第一结霜状态下第一低温圆管上的第一霜层生长信息;步骤3:基于不同低温圆管干模态结霜相似关系、第一霜层生长信息和第一结霜状态,预测获得第二结霜状态下第二低温圆管上的结霜平均厚度。本发明能够减少低温圆管上霜层厚度预测的计算量,提高预测效率。
-
公开(公告)号:CN117408054A
公开(公告)日:2024-01-16
申请号:CN202311358640.5
申请日:2023-10-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F17/11 , G06F119/08 , G06F113/08
Abstract: 本发明公开了一种基于结霜相似律的圆管结霜平均厚度预测方法,涉及结霜行为预测领域,所述方法包括:步骤1:对强对流条件下低温圆管干模态结霜行为进行模拟,获得强对流条件下不同低温圆管干模态结霜相似关系;步骤2:获得第一结霜状态下第一低温圆管上的第一霜层生长信息;步骤3:基于不同低温圆管干模态结霜相似关系、第一霜层生长信息和第一结霜状态,预测获得第二结霜状态下第二低温圆管上的结霜平均厚度。本发明能够减少低温圆管上霜层厚度预测的计算量,提高预测效率。
-
公开(公告)号:CN116610905A
公开(公告)日:2023-08-18
申请号:CN202310892878.X
申请日:2023-07-20
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种基于各向异性尺度修正的反距离权重数据插值方法,包括以下步骤:针对固定的飞行器翼面或者舵面构型S,将已知物理量的数据点、待插值的数据点表示为集合;由厚度方向、展向和弦向三个方向构成插值坐标系;统计插值坐标系下已知物理量的数据点集合和待插值的数据点集合在厚度方向、展向和弦向三个方向上的最小值和最大值;在插值坐标系下根据最小值和最大值对已知物理量和待插值数据点进行各向异性修正得到数据点;在插值坐标系下进行插值;计算得到待插值点的物理量,用于飞行器薄的翼面、舵面结构进行多场耦合。本发明可以各向异性修正翼面和舵面各方向的坐标,增大薄层方向的距离权重系数,提高数据插值精度。
-
公开(公告)号:CN116151082B
公开(公告)日:2023-06-20
申请号:CN202310433939.6
申请日:2023-04-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/23 , G06F30/15 , G06F113/08 , G06F119/08 , G06F111/10
Abstract: 本发明公开了基于表面数据传递的伸缩翼气动热与传热耦合模拟方法,涉及流固耦合计算领域,包括:步骤一:选取计算锚点;步骤二:流场求解;步骤三:获得每个计算锚点的流场壁面网格热流值;步骤四:将固定翼热流值和伸缩翼热流值分别对应至固体域和固定翼网格空间;步骤五:将固定翼和伸缩翼热流值分别插值到固定翼和伸缩翼结构壁面网格,对插值后的固定翼和伸缩翼结构壁面网格进行计算获得固定翼与伸缩翼的温度分布;步骤六:返回执行步骤二,累计返回执行预设次数步骤二后结束,获得最终的固定翼与伸缩翼的温度分布结果,本方法具有操作简单,计算量小的优点。
-
-
-
-
-
-
-
-
-