-
公开(公告)号:CN108153001B
公开(公告)日:2021-04-27
申请号:CN201611103311.6
申请日:2016-12-05
Applicant: 上海新微科技服务有限公司 , 中国科学院上海微系统与信息技术研究所 , 中科院南通光电工程中心
IPC: G02F1/05
Abstract: 本发明提供一种大带宽硅基光调制器,包括:基底及其上的绝缘层;n型掺杂硅层,位于所述绝缘层之上;p型掺杂硅层,位于所述n型掺杂硅层之上;铁电薄膜,位于所述p型掺杂硅层之上;其中,所述n型掺杂硅层接地,所述p型掺杂硅层接控制信号,所述铁电薄膜接控制信号。本发明有效的将铁电薄膜与普通的硅基光调制器集成在一起,利用铁电薄膜极化时的场强,大幅度提升了光调制器中载流子浓度的变化范围及灵敏度,从而提升了光调制器的调制带宽。本发明可直接用于硅基光调制器,也可以用于马赫‑曾德尔型光调制器的两臂,后者可以进一步增大调制器的调制宽度。本发明结构简单,控制方便,工艺与CMOS兼容,很适合工业推广。
-
公开(公告)号:CN105629522B
公开(公告)日:2018-07-06
申请号:CN201410620813.0
申请日:2014-11-06
Applicant: 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
IPC: G02F1/025
Abstract: 本发明提供一种硅基光调制器,至少包括:脊型波导,所述脊型波导包括平板部和位于所述平板部中间的凸条,所述凸条高于所述平板部;所述脊型波导中形成有第一轻掺杂区和第二轻掺杂区,所述第一轻掺杂区形成于所述凸条中间,且沿所述凸条的延伸方向延伸;所述第二轻掺杂区形成于所述第一轻掺杂区两侧的凸条中和与所述凸条两侧相连的平板部中;所述第一轻掺杂区和所述第二轻掺杂区的掺杂类型相反。在本发明的技术方案中,在脊型波导的凸条内由第一轻掺杂区和第二轻掺杂区形成两个背对背的PN结,在硅基光调制器工作时可以形成两个耗尽区,弥补解决离子注入对准误差的问题,并且提高了硅基光调制器的调制效率。
-
公开(公告)号:CN108152886A
公开(公告)日:2018-06-12
申请号:CN201611100701.8
申请日:2016-12-05
Applicant: 上海新微科技服务有限公司 , 中国科学院上海微系统与信息技术研究所 , 中科院南通光电工程中心
Abstract: 本发明提供一种基于硅光子晶体的三光束分光器,包括:二维硅光子晶体波导;偏振选择缺陷,设置于所述二维硅光子晶体波导的输入通道,使三光束分光器具有偏振选择功能;功率控制缺陷,设置于所述二维硅光子晶体波导的十字交叉区域,使得三束输出光具有相等的功率输出。本发明通过在二维硅光子晶体波导的输入通道引入不同的偏振选择缺陷,使得分光器具有偏振选择功能,对于TE分光器而言,TE波能够进入并在分光器中传播,而TM波不能进入,对于TM分光器则恰好相反;并且,同时通过在波导的十字交叉区域引入功率控制缺陷,使得三束输出光具有相等的功率输出。本发明具有传输效率高、适用波长范围大、结构简单、易于级联以及工作带宽较大等重要优势。
-
公开(公告)号:CN104730643A
公开(公告)日:2015-06-24
申请号:CN201510173591.7
申请日:2015-04-13
Applicant: 江苏尚飞光电科技有限公司 , 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
IPC: G02B6/27
CPC classification number: G02B6/278
Abstract: 本发明提供一种具有偏振不敏感特性的90°相移光混合器及其设计方法,其中,所述设计方法至少包括:将所述多模干涉耦合器中的多模区设计为矩形波导,确定所述多模区的尺寸,其方法如下:分析计算所述多模区各阶模的有效折射率,以得到横电波TE模式和横磁波TM模式的拍长差及其与所述多模区的宽度、厚度的对应关系图;预先选定所述多模区所需的厚度,在所述横电波TE模式和横磁波TM模式的拍长差为零的条件下,根据所述对应关系图确定所述多模区所需的宽度和长度,以使所述多模干涉耦合器工作时能够具有偏振不敏感特性。本发明的设计方法,通过最佳化的设计器件各个尺寸,实现偏振不敏感特性的90°相移光混合器。
-
公开(公告)号:CN103552975A
公开(公告)日:2014-02-05
申请号:CN201310572651.3
申请日:2013-11-15
Applicant: 江苏尚飞光电科技有限公司 , 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
IPC: B81B3/00
Abstract: 本发明提供一种液压微位移驱动器及微位移装置,至少包括:设有内腔(18)的缸筒(13);密封所述缸筒(13)两端的上端盖(12)以及下端盖(15);位于所述上端盖上表面的球形凸台(11);所述球形凸台的中心线与所述缸筒的中心线重合;设置于所述下端盖(15)内与所述内腔连通的进油通道(14)以及与所述进油通道(14)导通的进油嘴(17)。本发明提出的液压微位移驱动器采用向密封的缸筒内充进一定压力的液体使得圆柱形管状缸筒产生相应的轴向伸长来实现微位移驱动,具有驱动行程较大、驱动平稳、抗干扰能力强以及皮实耐用等特点,克服了压电晶体驱动行程小、稳定性较差缺陷。
-
公开(公告)号:CN102879858A
公开(公告)日:2013-01-16
申请号:CN201210419042.X
申请日:2012-10-26
Applicant: 江苏尚飞光电科技有限公司 , 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种具有光栅的单纤三向复用器。该单纤三向复用器至少包括:用于接入第一波长及第二波长的光波信号的输入波导;用于接入第三波长的光波信号的上传波导;第一输出波导;第二输出波导;及多模波导耦合器;该多模波导耦合器用于分离所述第一波长信号及第二波长信号,并使两者分别由第一输出波导及第二输出波导输出;此外,该多模波导耦合器所具有的光栅,能反射所述第三波长的光波信号,并使该光波信号由输入波导输出。优选地,输入波导、上传波导、第一输出波导、第二输出波导及多模波导耦合器均通过对半导体基底的刻蚀来形成。本发明的优点包括:结构紧凑小巧,且制作工艺与CMOS工艺完全兼容,无需复杂工艺,加工成本低。
-
公开(公告)号:CN105652371B
公开(公告)日:2019-07-26
申请号:CN201410664561.1
申请日:2014-11-14
Applicant: 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种偏振分束器,所述偏振分束器至少包括:形成在SOI材料的顶层硅上的波导,所述波导至少包括第一级Y分支波导、第二级Y分支波导、第三级Y分支波导,以及模式转化器;所述第二级Y分支波导包括第三分支波导和第四分支波导;其中,所述模式转化器连接第一级Y分支波导的根波导和第二级Y分支波导的根波导;所述第四分支波导连接所述第三级Y分支波导的根波导;所述第一级Y分支波导的根波导的宽度S1的取值范围为S1>1μm。本发明提供的偏振分束器具有几百纳米的工作带宽和较为简单的加工工艺。
-
公开(公告)号:CN108153001A
公开(公告)日:2018-06-12
申请号:CN201611103311.6
申请日:2016-12-05
Applicant: 上海新微科技服务有限公司 , 中国科学院上海微系统与信息技术研究所 , 中科院南通光电工程中心
IPC: G02F1/05
Abstract: 本发明提供一种大带宽硅基光调制器,包括:基底及其上的绝缘层;n型掺杂硅层,位于所述绝缘层之上;p型掺杂硅层,位于所述n型掺杂硅层之上;铁电薄膜,位于所述p型掺杂硅层之上;其中,所述n型掺杂硅层接地,所述p型掺杂硅层接控制信号,所述铁电薄膜接控制信号。本发明有效的将铁电薄膜与普通的硅基光调制器集成在一起,利用铁电薄膜极化时的场强,大幅度提升了光调制器中载流子浓度的变化范围及灵敏度,从而提升了光调制器的调制带宽。本发明可直接用于硅基光调制器,也可以用于马赫-曾德尔型光调制器的两臂,后者可以进一步增大调制器的调制宽度。本发明结构简单,控制方便,工艺与CMOS兼容,很适合工业推广。
-
公开(公告)号:CN104730643B
公开(公告)日:2018-04-17
申请号:CN201510173591.7
申请日:2015-04-13
Applicant: 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
IPC: G02B6/27
Abstract: 本发明提供一种具有偏振不敏感特性的90°相移光混合器及其设计方法,其中,所述设计方法至少包括:将所述多模干涉耦合器中的多模区设计为矩形波导,确定所述多模区的尺寸,其方法如下:分析计算所述多模区各阶模的有效折射率,以得到横电波TE模式和横磁波TM模式的拍长差及其与所述多模区的宽度、厚度的对应关系图;预先选定所述多模区所需的厚度,在所述横电波TE模式和横磁波TM模式的拍长差为零的条件下,根据所述对应关系图确定所述多模区所需的宽度和长度,以使所述多模干涉耦合器工作时能够具有偏振不敏感特性。本发明的设计方法,通过最佳化的设计器件各个尺寸,实现偏振不敏感特性的90°相移光混合器。
-
公开(公告)号:CN106145021A
公开(公告)日:2016-11-23
申请号:CN201510137590.7
申请日:2015-03-26
Applicant: 江苏尚飞光电科技有限公司 , 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种光学微纳谐振腔结构及其制作方法,所述光学微纳谐振腔结构包括两个对工作电磁波具有全反射功能的单排粒子链,所述单排粒子链由多个间隔排列的粒子组成,所述两个单排粒子链之间的间隔距离使得所述光学微纳谐振腔结构的共振波长为工作电磁波的波长。本发明利用了单排粒子链对于特定偏振光的全反射特性,通过优化单排粒子链的结构以及两个单排粒子链之间的距离,获得了一种新型的高品质因子光学微纳谐振腔。本发明利用两个单排粒子链的全反射所设计的谐振腔,具有低损耗、高品质因子和小尺寸的特点,在集成光学领域具有很好的应用前景。
-
-
-
-
-
-
-
-
-