脑网络数据多层嵌入向量特征提取方法及装置

    公开(公告)号:CN117036727A

    公开(公告)日:2023-11-10

    申请号:CN202311294411.1

    申请日:2023-10-09

    Abstract: 本发明公开了一种脑网络数据多层嵌入向量特征提取方法及装置,该方法对多层网络的嵌入学习和流形优化得到的多层网络节点信息的层内层间网络一致性嵌入表示F和层内节点嵌入表示Fi,再分别对每一层的层内节点嵌入表示Fi和层内层间网络一致性嵌入表示F进行相干性计算获得每层层内的相干特征,再计算每层层内的相干特征的熵获得相干熵特征,即为脑网络数据的多层嵌入向量特征。本发明通过对复杂的多层网络信息进行降维与关键提取,得到更加具有代表性、更加有效的多层网络特征信息,有效的提高多层网络数据信息的利用率,利用较少的数据量实现较高准确率的分析与分类。

    脑网络数据多层嵌入向量特征提取方法及装置

    公开(公告)号:CN117036727B

    公开(公告)日:2024-01-05

    申请号:CN202311294411.1

    申请日:2023-10-09

    Abstract: 本发明公开了一种脑网络数据多层嵌入向量特征提取方法及装置,该方法对多层网络的嵌入学习和流形优化得到的多层网络节点信息的层内层间网络一致性嵌入表示F和层内节点嵌入表示Fi,再分别对每一层的层内节点嵌入表示Fi和层内层间网络一致性嵌入表示F进行相干性计算获得每层层内的相干特征,再计算每层层内的相干特征的熵获得相干熵特征,即为脑网络数据的多层嵌入向量特征。本发明通过对复杂的多层网络信息进行降维与关键提取,得到更加具有代表性、更加有效的多层网络特征信息,有效的提高多层网络数据信息的利用率,利用较少的数据量实现较高准确率的分析与分类。

Patent Agency Ranking