基于太阳能无人机的平台载荷电磁兼容的方法、太阳能无人机

    公开(公告)号:CN112298525B

    公开(公告)日:2021-11-02

    申请号:CN202011046626.8

    申请日:2020-09-29

    IPC分类号: B64C1/36 H01Q1/28

    摘要: 本发明提供一种基于太阳能无人机的平台载荷电磁兼容的方法、太阳能无人机,其中所述方法包括电磁噪声辐射兼容设计、电磁噪声传导兼容设计;所述的电磁噪声辐射兼容设计:将30‑512MHz频段的无线通信天线设置在太阳能无人机的尾梁,同时,30‑512MHz频段的无线通信天线与舵机也设有一段安全距离;此将大于600MHz的无线通信天线设置在太阳能无人机的机壳上;所述的电磁噪声传导兼容设计包括如下:对于无人机中的各个单元设备采用就近方式取电,同时通过电源地、保护地、数字信号地、模拟信号地多种地的分割处理。本发明解决太阳能无人机的多种单元设备之间的电磁兼容问题,从而有效搭载无线单元设备,保障了各项业务的开通与正常运行。

    一种适合平流层升空平台的网络通信能力分析方法

    公开(公告)号:CN112422316B

    公开(公告)日:2021-11-26

    申请号:CN202011110849.6

    申请日:2020-10-16

    IPC分类号: H04L12/24

    摘要: 本发明提供一种适合平流层升空平台的网络通信能力分析方法,所述的方法包括以下步骤:S1:获取仿真网络的各个节点的地理位置、各个节点之间信道、各个节点所具备波形的参数、节点传输信息;S2:将获得的数据写入仿真软件的仿真配置文件;S3:在发射端,物理层确定仿真工程中的任一节点的发射波形,在各自地理环境和电磁环境不同信道下的覆盖场强分布;在接收端,物理层同时根据接收机的信号带宽BW、频谱效率函数Eff、灵敏度Sensitivity等参数,确定收发两端的传输数据率;S4:根据S3确定的传输数据率,再依据链路层的收发时隙分布,所述的收发时隙包括上行时隙、下行时隙,确定可承载的上下行数据吞吐量;S5:根据路由协议,业务选择数据吞吐量最大的路径实现端到端传输。

    一种适合平流层升空平台的网络通信能力分析方法

    公开(公告)号:CN112422316A

    公开(公告)日:2021-02-26

    申请号:CN202011110849.6

    申请日:2020-10-16

    IPC分类号: H04L12/24

    摘要: 本发明提供一种适合平流层升空平台的网络通信能力分析方法,所述的方法包括以下步骤:S1:获取仿真网络的各个网元的地理位置、各个网元之间信道、各个网元所具备波形的参数、节点传输信息;S2:将获得的数据写入仿真软件的仿真配置文件;S3:在发射端,物理层确定仿真工程中的任一节点的发射波形,在各自地理环境和电磁环境不同信道下的覆盖场强分布;在接收端,物理层同时根据接收机的信号带宽BW、频谱效率函数Eff、灵敏度Sensitivity等参数,确定收发两端的传输数据率;S4:根据S3确定的传输数据率,再依据链路层的收发时隙分布,所述的收发时隙包括上行时隙、下行时隙,确定可承载的上下行数据吞吐量;S5:根据路由协议,业务选择数据吞吐量最大的路径实现端到端传输。

    基于太阳能无人机的平台载荷电磁兼容的方法、太阳能无人机

    公开(公告)号:CN112298525A

    公开(公告)日:2021-02-02

    申请号:CN202011046626.8

    申请日:2020-09-29

    IPC分类号: B64C1/36 H01Q1/28

    摘要: 本发明提供一种基于太阳能无人机的平台载荷电磁兼容的方法、太阳能无人机,其中所述方法包括电磁噪声辐射兼容设计、电磁噪声传导兼容设计;所述的电磁噪声辐射兼容设计:将30‑512MHz频段的无线通信天线设置在太阳能无人机的尾梁,同时,30‑512MHz频段的无线通信天线与舵机也设有一段安全距离;此将大于600MHz的无线通信天线设置在太阳能无人机的机壳上;所述的电磁噪声传导兼容设计包括如下:对于无人机中的各个单元设备采用就近方式取电,同时通过电源地、保护地、数字信号地、模拟信号地多种地的分割处理。本发明解决太阳能无人机的多种单元设备之间的电磁兼容问题,从而有效搭载无线单元设备,保障了各项业务的开通与正常运行。