-
公开(公告)号:CN112186743B
公开(公告)日:2022-03-25
申请号:CN202010972420.1
申请日:2020-09-16
申请人: 北京交通大学
摘要: 本发明提供了一种基于深度强化学习的动态电力系统经济调度方法,将动态经济调度转化为多阶段序贯决策模型,本发明将进行动作决策的调度中心作为决策主体,实际电力系统作为环境,通过对强化学习中动作、状态、奖励等元素的设计,将电力系统的经济调度模型转化为典型的多阶段序贯决策模型。该模型避免了对日益复杂的电力系统进行建模,且不要求精确的火电机组出力成本函数,通过智能体与环境的不断交互,更新策略,自适应负荷与新能源出力的不确定性,实现任意场景下的电力系统动态经济调度。
-
公开(公告)号:CN112186811B
公开(公告)日:2022-03-25
申请号:CN202010972441.3
申请日:2020-09-16
申请人: 北京交通大学
摘要: 本发明提供了一种基于深度强化学习的AGC机组动态优化方法,本发明引入了强化学习中的深度Q网络(deep Q network,DQN)算法,通过智能体与环境的不断交互,根据环境反馈的奖励值,不断改进智能体的策略,实现对系统中不确定性变量的学习,避免了对系统中的不确定性变量的建模。本方法能够根据负荷和风电的预测信息,自适应学习预测带来的不确定性,使得所给出的结果,即各台AGC机组的调节量能够更加吻合电力系统实际有功缺额,有助于系统的频率稳定,解决大规模新能源并网带来的随机扰动问题。
-
公开(公告)号:CN112186811A
公开(公告)日:2021-01-05
申请号:CN202010972441.3
申请日:2020-09-16
申请人: 北京交通大学
摘要: 本发明提供了一种基于深度强化学习的AGC机组动态优化方法,本发明引入了强化学习中的深度Q网络(deep Q network,DQN)算法,通过智能体与环境的不断交互,根据环境反馈的奖励值,不断改进智能体的策略,实现对系统中不确定性变量的学习,避免了对系统中的不确定性变量的建模。本方法能够根据负荷和风电的预测信息,自适应学习预测带来的不确定性,使得所给出的结果,即各台AGC机组的调节量能够更加吻合电力系统实际有功缺额,有助于系统的频率稳定,解决大规模新能源并网带来的随机扰动问题。
-
公开(公告)号:CN112186743A
公开(公告)日:2021-01-05
申请号:CN202010972420.1
申请日:2020-09-16
申请人: 北京交通大学
摘要: 本发明提供了一种基于深度强化学习的动态电力系统经济调度方法,将动态经济调度转化为多阶段序贯决策模型,本发明将进行动作决策的调度中心作为决策主体,实际电力系统作为环境,通过对强化学习中动作、状态、奖励等元素的设计,将电力系统的经济调度模型转化为典型的多阶段序贯决策模型。该模型避免了对日益复杂的电力系统进行建模,且不要求精确的火电机组出力成本函数,通过智能体与环境的不断交互,更新策略,自适应负荷与新能源出力的不确定性,实现任意场景下的电力系统动态经济调度。
-
公开(公告)号:CN112149347B
公开(公告)日:2023-12-26
申请号:CN202010974175.8
申请日:2020-09-16
申请人: 北京交通大学
IPC分类号: G06F30/27 , G06Q10/063 , G06Q50/06 , G06N3/092 , G06F111/04 , G06F113/04
摘要: 本发明提供了一种基于深度强化学习的配电网负荷转供方法。该方法包括:配电网发生故障,开始负荷转供;将配电网的实时状态信息输入到智能体,计算出动作评价向量,基于动作评价向量根据动作策略选取相应的动作;智能体对配电网执行所述动作,对配电网的动作及动作后的状态进行评价,根据约束条件与目标函数计算奖励Reward,根据奖励Reward和结束规则确定Done的值,对智能体进行参数更新;依据结束标志位判断是否结束序列动作。本申请的方法利用深度强化学习来提高配电网的故障应急恢复能力与可靠性,基于深度强化学习的配电网负荷转供算法避免了故障时的大量运算与电网仿真迭代,提高了负荷转供的速度,使配电网具有更高的可靠性。
-
公开(公告)号:CN112149347A
公开(公告)日:2020-12-29
申请号:CN202010974175.8
申请日:2020-09-16
申请人: 北京交通大学
IPC分类号: G06F30/27 , G06Q10/06 , G06Q50/06 , G06F111/04 , G06F113/04
摘要: 本发明提供了一种基于深度强化学习的配电网负荷转供方法。该方法包括:配电网发生故障,开始负荷转供;将配电网的实时状态信息输入到智能体,计算出动作评价向量,基于动作评价向量根据动作策略选取相应的动作;智能体对配电网执行所述动作,对配电网的动作及动作后的状态进行评价,根据约束条件与目标函数计算奖励Reward,根据奖励Reward和结束规则确定Done的值,对智能体进行参数更新;依据结束标志位判断是否结束序列动作。本申请的方法利用深度强化学习来提高配电网的故障应急恢复能力与可靠性,基于深度强化学习的配电网负荷转供算法避免了故障时的大量运算与电网仿真迭代,提高了负荷转供的速度,使配电网具有更高的可靠性。
-
-
-
-
-