-
公开(公告)号:CN110703101B
公开(公告)日:2021-01-05
申请号:CN201910861836.3
申请日:2019-09-12
Applicant: 北京交通大学
IPC: G01R31/367 , G01R31/392
Abstract: 本发明涉及一种锂离子电池分区间循环容量衰退预测方法,包括如下步骤:S1、对锂离子电池进行不同SOC区间衰退测试,得到不同SOC区间的测试数据;S2、进行分区间特征参数提取;S3、利用Keras深度学习框架构建LSTM RNN模型,对模型进行初始化;S4、利用步骤S1得到的测试数据和步骤S2得到的特征参数的值对LSTM RNN模型进行训练,并进行模型验证;S5、经过模型训练和模型验证后的LSTM RNN模型,通过迭代的形式输出给定区间下循环电池的容量衰退曲线,根据区间范围[SOCk‑1,SOCk]的不同,输出不同循环次数下的电池容量值,对电池的衰退容量进行预测。
-
公开(公告)号:CN110703101A
公开(公告)日:2020-01-17
申请号:CN201910861836.3
申请日:2019-09-12
Applicant: 北京交通大学
IPC: G01R31/367 , G01R31/392
Abstract: 本发明涉及一种锂离子电池分区间循环容量衰退预测方法,包括如下步骤:S1、对锂离子电池进行不同SOC区间衰退测试,得到不同SOC区间的测试数据;S2、进行分区间特征参数提取;S3、利用Keras深度学习框架构建LSTM RNN模型,对模型进行初始化;S4、利用步骤S1得到的测试数据和步骤S2得到的特征参数的值对LSTM RNN模型进行训练,并进行模型验证;S5、经过模型训练和模型验证后的LSTM RNN模型,通过迭代的形式输出给定区间下循环电池的容量衰退曲线,根据区间范围[SOCk-1,SOCk]的不同,输出不同循环次数下的电池容量值,对电池的衰退容量进行预测。
-