-
公开(公告)号:CN115601588A
公开(公告)日:2023-01-13
申请号:CN202211196793.X
申请日:2022-09-30
Applicant: 北京信息科技大学(CN)
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明涉及计算机视觉领域的模型解释方法,特别涉及针对图像分类深度学习模型得到模型可解释性语句,提升模型解释效果,包括以下步骤:计算分类模型神经元置信度分数;利用反向传播推导出对应神经元权重并与置信度相乘作为最终评分找出重要神经元;使用类激活图将重要神经元在图像上的关注区域可视化,提取视觉特征,并用同样方法构建对应类的神经元视觉特征数据集;将视觉特征数据集标注对应语义信息并使用分类网络对其进行训练;使用训练好的分类网络提取重要神经元视觉特征对应的语义信息;结合神经元重要程度分数、视觉特征、语义信息组成描述此模型分类过程的解释性语句。