-
公开(公告)号:CN117271803B
公开(公告)日:2024-01-30
申请号:CN202311543548.6
申请日:2023-11-20
Applicant: 北京大学 , 国网信息通信产业集团有限公司 , 国网甘肃省电力公司白银供电公司
Abstract: 本公开提供了一种知识图谱补全模型的训练方法、装置、设备及存储介质,包括:获取每个三元组数据的头实体及尾实体,得到第一实体集合;将每个头实体和尾实体作为第一初始尾实体,获取各类模态对应的第一模态特征向量;将第一初始尾实体包括的至少一类模态中的任一分别作为目标类模态,根据其对应的第一模态特征向量与预设的第一输入数据输入至初始知识图谱补全模型,进而确定目标类模态对应的初始损失函数;对每类模态对应的初始损失函数进行加和处理,得到损失函数,确定其收敛至损失阈值得到知识图谱补全模型。本公开通过对不同模态进行单独训练得到对应的初始损失函数,减小了不同模态间的相互干扰,提高了知识图谱补全的准确率。
-
公开(公告)号:CN117271803A
公开(公告)日:2023-12-22
申请号:CN202311543548.6
申请日:2023-11-20
Applicant: 北京大学 , 国网信息通信产业集团有限公司 , 国网甘肃省电力公司白银供电公司
Abstract: 本公开提供了一种知识图谱补全模型的训练方法、装置、设备及存储介质,包括:获取每个三元组数据的头实体及尾实体,得到第一实体集合;将每个头实体和尾实体作为第一初始尾实体,获取各类模态对应的第一模态特征向量;将第一初始尾实体包括的至少一类模态中的任一分别作为目标类模态,根据其对应的第一模态特征向量与预设的第一输入数据输入至初始知识图谱补全模型,进而确定目标类模态对应的初始损失函数;对每类模态对应的初始损失函数进行加和处理,得到损失函数,确定其收敛至损失阈值得到知识图谱补全模型。本公开通过对不同模态进行单独训练得到对应的初始损失函数,减小了不同模态间的相互干扰,提高了知识图谱补全的准确率。
-