-
公开(公告)号:CN108629091B
公开(公告)日:2022-03-08
申请号:CN201810352499.0
申请日:2018-04-19
Applicant: 北京工业大学
IPC: G06F30/17
Abstract: 本发明公开一种基于选择性融合多通道机械信号频谱多特征子集的磨机负荷参数预测方法,首先,对多通道机械振动和振声的时域信号采用快速傅里叶变换(FFT)得到多通道单尺度频谱;接着,针对每个通道的单尺度频谱,采用基于候选惩罚参数的集成构造策略得到面向单尺度特征子集构建的候选LASSO子模型,结合SEN学习机制构建全部通道的候选单通道SEN‑LASSO模型;最后,再次的采用SEN学习机制对候选单通道SEN‑LASSO模型进行选择和合并,得到对多通道机械信号及其频谱特征子集进行同时优化选择的MLPF模型。
-
公开(公告)号:CN108629091A
公开(公告)日:2018-10-09
申请号:CN201810352499.0
申请日:2018-04-19
Applicant: 北京工业大学
IPC: G06F17/50
Abstract: 本发明公开一种基于选择性融合多通道机械信号频谱多特征子集的磨机负荷参数预测方法,首先,对多通道机械振动和振声的时域信号采用快速傅里叶变换(FFT)得到多通道单尺度频谱;接着,针对每个通道的单尺度频谱,采用基于候选惩罚参数的集成构造策略得到面向单尺度特征子集构建的候选LASSO子模型,结合SEN学习机制构建全部通道的候选单通道SEN-LASSO模型;最后,再次的采用SEN学习机制对候选单通道SEN-LASSO模型进行选择和合并,得到对多通道机械信号及其频谱特征子集进行同时优化选择的MLPF模型。
-