-
公开(公告)号:CN116381275A
公开(公告)日:2023-07-04
申请号:CN202310454697.9
申请日:2023-04-25
申请人: 北京理工大学
IPC分类号: G01P15/093 , G01P15/08
摘要: 本发明公开一种基于光信号检测的MOEMS加速度计,属于加速度精准测量领域。主要由输入光纤1、输出光纤2、可动式微镜3组成,可动式微镜3由质量块3‑1、微弹簧3‑2和微反射镜3‑3组成。加速度计将外界输入的加速度信号转换为光信号。通过对输出光信号的精准检测,可以准确得到加速度过载。本发明要解决的技术问题为:进一步提高微光机电加速度计系统的集成度并实现尺寸微小型化。具有以下优点:(1)结构尺寸微小,(2)高灵敏度,(3)系统工作安全可靠。
-
公开(公告)号:CN103234909A
公开(公告)日:2013-08-07
申请号:CN201310149175.4
申请日:2013-04-26
申请人: 北京理工大学
摘要: 本发明涉及一种快速脉冲激光偏振度测量装置,属于激光技术领域。该装置包括激光器(1)、光束整形透镜(2)、格兰泰勒棱镜(3)、消偏分光棱镜(4)、偏振分光棱镜(5)、光电探测器A(6)和光电探测器B(7)。本发明的装置采用偏振分光棱镜,可以实现对被测样品后向散射光束中水平偏振P光和垂直偏振S光的分离,同时完成光束中水平偏振P光电压值VP和垂直偏振S光电压值VS的测量,并利用(VP—VS)/(VP+VS)计算得出被测样品后向散射的偏振度,从而实现对被测样品偏振度的快速测量。测量过程中,避免通过调节检偏器来分别获取水平偏振P光和垂直偏振S光所带来的误差,所以测量精度高。
-
公开(公告)号:CN116448598A
公开(公告)日:2023-07-18
申请号:CN202310221486.0
申请日:2023-03-09
申请人: 北京理工大学
摘要: 本发明公开的一种三轴霍普金森杆冲击试验的加载控制装置与方法,属于三轴冲击试验技术领域。本发明包括直线电机、限位杆、端盖、子弹发射筒、实验子弹、空气压缩机、储气罐、控制台、三轴霍普金森杆、缓冲垫片、垫片夹持板。所述装置与方法和三轴霍普金森杆配套使用,通过限位机构能够精确控制和调节实验子弹的发射位置和加速距离,从而精确控制加速度峰值,进而通过实验得到驱动气压、加速距离与加速度峰值对应关系;本发明的加载控制装置配合实验子弹的快速复位,能够实现不同加速度峰值的连续多次冲击加载、三轴多次冲击同步加载,以及单轴依次循环加载的自动化,显著提高三轴冲击加载实验自动化程度以及实验效率和控制精度。
-
公开(公告)号:CN102707331B
公开(公告)日:2014-10-01
申请号:CN201210188888.7
申请日:2012-06-08
申请人: 北京理工大学
IPC分类号: G01V8/12
摘要: 本发明涉及一种基于偏振的收发一体化亚纳秒脉冲激光探测系统,属于激光技术领域。本发明是由偏振激光作为探测光源,通过旋转同轴的1/2波片和1/4波片调整线偏振激光的偏振方向,实现发射信号与接收信号在偏振分光棱镜处分离。传统的光学发射、光学接收窗口分离的激光探测系统存在探测盲区,而本发明采用了光学系统收发合一的模式,并采用亚纳秒脉冲激光进行探测,提高了探测过程中的抗悬浮粒子和云雾干扰能力,同时提高了探测精度。尤其适用于中近程激光测距,具有良好的应用前景。
-
公开(公告)号:CN102707331A
公开(公告)日:2012-10-03
申请号:CN201210188888.7
申请日:2012-06-08
申请人: 北京理工大学
IPC分类号: G01V8/12
摘要: 本发明涉及一种基于偏振的收发一体化亚纳秒脉冲激光探测系统,属于激光技术领域。本发明是由偏振激光作为探测光源,通过旋转同轴的1/2波片和1/4波片调整线偏振激光的偏振方向,实现发射信号与接收信号在偏振分光棱镜处分离。传统的光学发射、光学接收窗口分离的激光探测系统存在探测盲区,而本发明采用了光学系统收发合一的模式,并采用亚纳秒脉冲激光进行探测,提高了探测过程中的抗悬浮粒子和云雾干扰能力,同时提高了探测精度。尤其适用于中近程激光测距,具有良好的应用前景。
-
公开(公告)号:CN220399470U
公开(公告)日:2024-01-26
申请号:CN202320960389.9
申请日:2023-04-25
申请人: 北京理工大学
IPC分类号: G01P15/093 , G01P15/08
摘要: 本发明公开一种基于光信号检测的MOEMS加速度计,属于加速度精准测量领域。主要由输入光纤1、输出光纤2、可动式微镜3组成,可动式微镜3由质量块3‑1、微弹簧3‑2和微反射镜3‑3组成。加速度计将外界输入的加速度信号转换为光信号。通过对输出光信号的精准检测,可以准确得到加速度过载。本发明要解决的技术问题为:进一步提高微光机电加速度计系统的集成度并实现尺寸微小型化。具有以下优点:(1)结构尺寸微小,(2)高灵敏度,(3)系统工作安全可靠。
-
-
-
-
-