一种模型训练层AdaBoost算法的参数优化方法

    公开(公告)号:CN107170443A

    公开(公告)日:2017-09-15

    申请号:CN201710332545.6

    申请日:2017-05-12

    Abstract: 本发明涉及一种模型训练层AdaBoost算法的参数优化方法。从应用场景的角度讲,属于音频事件识别技术领域;从技术实现的角度来讲,亦属于计算机科学与音频处理技术领域。本发明首先,提取音频训练样本底层特征,生成特征向量;然后,使用模拟退火算法进行AdaBoost模型的参数优化;最后使用优化后参数生成音频事件识别模型。本发明所述方法,对模型训练层AdaBoost算法参数进行优化,逼近迭代次数的最优解。在保持优秀的识别效果的同时,极大地缩短了参数优化时间,进而提高模型训练的效率,缓解了模型训练阶段网格法寻优耗时严重的问题。

Patent Agency Ranking