-
公开(公告)号:CN114325509B
公开(公告)日:2023-11-07
申请号:CN202111652246.3
申请日:2021-12-30
申请人: 北京理工大学重庆创新中心 , 北京理工大学
IPC分类号: G01R33/02 , G01R33/028 , H01M50/40 , H01M50/403
摘要: 本发明公开了一种用于检测锂离子电池枝晶生长的智能隔膜及检测方法,所述智能隔膜用于锂离子电池中,该智能隔膜包括隔膜基体,隔膜基体至少一面负载磁性金属的非磁性化合物,磁性金属的非磁性化合物通过磁控溅射的方法覆盖在隔膜基体上,以形成智能隔膜。本发明利用智能隔膜来判断锂离子电池的锂枝晶生长情况,不仅时效性好,在锂离子电池短路前监测到锂枝晶,而且可以在不破坏锂离子电池的情况下准确检测出生长的锂枝晶,不影响锂离子电池正常工作的能力。本发明克服了传统锂枝晶检测方法所存在的操作难度大、准确性差、检测效率低等问题。
-
公开(公告)号:CN114325509A
公开(公告)日:2022-04-12
申请号:CN202111652246.3
申请日:2021-12-30
申请人: 北京理工大学重庆创新中心 , 北京理工大学
IPC分类号: G01R33/02 , G01R33/028 , H01M50/40 , H01M50/403
摘要: 本发明公开了一种用于检测锂离子电池枝晶生长的智能隔膜及检测方法,所述智能隔膜用于锂离子电池中,该智能隔膜包括隔膜基体,隔膜基体至少一面负载磁性金属的非磁性化合物,磁性金属的非磁性化合物通过磁控溅射的方法覆盖在隔膜基体上,以形成智能隔膜。本发明利用智能隔膜来判断锂离子电池的锂枝晶生长情况,不仅时效性好,在锂离子电池短路前监测到锂枝晶,而且可以在不破坏锂离子电池的情况下准确检测出生长的锂枝晶,不影响锂离子电池正常工作的能力。本发明克服了传统锂枝晶检测方法所存在的操作难度大、准确性差、检测效率低等问题。
-
公开(公告)号:CN116534847A
公开(公告)日:2023-08-04
申请号:CN202310369523.2
申请日:2023-04-07
申请人: 北京理工大学 , 北京理工大学重庆创新中心
摘要: 本发明公开了一种基于SnO2掺杂石墨烯气凝胶的H2传感器材料及制备方法,将氧化石墨烯与N,N‑二甲基甲酰胺和水混合形成混合溶液,将混合溶液中加入锡盐溶液中,采用溶剂热法进行热处理,然后再置于马弗炉中煅烧即得。本发明在石墨烯气凝胶上掺杂了SnO2纳米颗粒,通过石墨烯气凝胶结构来改变二氧化锡材料的工作特性,使得传感器材料具有较高的气敏性能和较好的选择性以及稳定性,降低了传感器的工作温度和器件功耗,其具有超高灵敏度以及抗干扰性能,耐电解液腐蚀性能好,在未来锂离子电池热失控预警技术领域上有广阔的应用前景。
-
公开(公告)号:CN114156453B
公开(公告)日:2023-11-24
申请号:CN202111458486.X
申请日:2021-12-01
申请人: 北京理工大学重庆创新中心
IPC分类号: H01M4/36 , H01M4/58 , H01M4/583 , H01M10/054
摘要: 本发明提供了一种双位点掺杂改性磷酸钒钠正极材料及其制备方法和应用,所述正极材料包含正极内核和碳包覆层,所述正极内核化学式为Na3‑xMxV2‑y/3Ny(PO4)3‑a(Xn‑)3a/n,其中M为Li+、Na+、K+、Rb+、Cs+中的至少一种,N为Li+、Na+、K+、+ + n‑ 3‑ 2‑ 4‑Rb、Cs中的至少一种,X 为BO3 、SO4 、SiO4 、P2O74‑、B4O74‑、N3‑、S2‑、F‑、Cl‑、Br‑中的至少一种,0.01≤x≤0.2,0.01≤y≤0.3,0≤a≤1,所述改性磷酸钒钠正极材料的粒径为50~600nm。本发明采用碱金属同时取代Na位和V位,Na位取代提升材料充放电电压,V位取代调节局域化学键和电子分布,实现精准的晶格调控,提升电子和离(56)对比文件李长刚;张旭东;孙荣.Na_(3-x)Li_xV_2(PO_4)_3正极材料的制备与电化学性能研究.齐鲁工业大学学报.2020,(04),第5-12页.
-
公开(公告)号:CN116858894A
公开(公告)日:2023-10-10
申请号:CN202310618298.1
申请日:2023-05-29
申请人: 北京理工大学重庆创新中心
摘要: 本发明涉及气体传感器技术领域,具体涉及一种铁酸锌纳米片一氧化碳传感器材料及其制备方法和应用。该铁酸锌纳米片一氧化碳传感器材料相对ZnO类一氧化碳传感器贵金属掺杂成本低廉,制备工艺简单、可重复性高,对于一氧化碳具有极高的检测灵敏度,同时,相对于传统的锌气体传感器,可极大地改善其工作温度,在120℃下即可对一氧化碳有良好响应。
-
公开(公告)号:CN116284765A
公开(公告)日:2023-06-23
申请号:CN202310317767.6
申请日:2023-03-28
申请人: 北京理工大学重庆创新中心
摘要: 本发明公开了一种二氧化锡/聚苯胺复合纳米一氧化碳传感器材料及制备方法,包括以下步骤:A、向锡盐溶液中加入NaOH溶液,沉淀溶液转移至高压釜进行水热并冷却至室温,清洗干燥后,得到锡氧化物;B、将苯胺单体与锡氧化物溶解于酸溶液中,然后加入溶有过硫酸铵的酸溶液,在冰浴条件下反应,离心得到沉淀,得到复合物;C、将复合物置于瓷舟中,用管式炉活化处理,冷却后即得。本发明的传感器材料规避了传统金属半导体氧化物传感器材料工作温度高、功耗高、成本高的问题,同时通过构建MOF框架结构以及合成聚苯胺,提高了传感器的耐腐蚀性能,其能够适应锂离子电池的内部环境。
-
公开(公告)号:CN114156453A
公开(公告)日:2022-03-08
申请号:CN202111458486.X
申请日:2021-12-01
申请人: 北京理工大学重庆创新中心
IPC分类号: H01M4/36 , H01M4/58 , H01M4/583 , H01M10/054
摘要: 本发明提供了一种双位点掺杂改性磷酸钒钠正极材料及其制备方法和应用,所述正极材料包含正极内核和碳包覆层,所述正极内核化学式为Na3‑xMxV2‑y/3Ny(PO4)3‑a(Xn‑)3a/n,其中M为Li+、Na+、K+、Rb+、Cs+中的至少一种,N为Li+、Na+、K+、Rb+、Cs+中的至少一种,Xn‑为BO33‑、SO42‑、SiO44‑、P2O74‑、B4O74‑、N3‑、S2‑、F‑、Cl‑、Br‑中的至少一种,0.01≤x≤0.2,0.01≤y≤0.3,0≤a≤1,所述改性磷酸钒钠正极材料的粒径为50~600nm。本发明采用碱金属同时取代Na位和V位,Na位取代提升材料充放电电压,V位取代调节局域化学键和电子分布,实现精准的晶格调控,提升电子和离子电导率。
-
公开(公告)号:CN116675218A
公开(公告)日:2023-09-01
申请号:CN202310618346.7
申请日:2023-05-29
申请人: 北京理工大学重庆创新中心
IPC分类号: C01B32/168 , G01N27/00 , B82Y30/00 , B82Y40/00
摘要: 本发明涉及气体传感器技术领域,具体涉及一种SnO2掺杂碳纳米管及其制备方法和应用。该SnO2掺杂碳纳米管结合了SnO2对气体的高识别能力和碳纳米管(CNTs)的高电导率、高纵横比、大比表面积和高稳定性等优点,使得该SnO2掺杂碳纳米管复合材料具有较高的气敏性能和较好的选择性以及稳定性,尤其可耐电解液腐蚀性,解决了锂电池内置气体传感器的材料选择问题。同时,该SnO2掺杂碳纳米管合成工艺简单高效,制造成本低廉,绿色环保,商业化的潜力巨大。
-
公开(公告)号:CN114229909A
公开(公告)日:2022-03-25
申请号:CN202111541917.9
申请日:2021-12-16
申请人: 北京理工大学重庆创新中心
IPC分类号: C01G45/12 , H01M4/505 , H01M4/525 , H01M10/0525
摘要: 本发明公开了一种高容量锂化锰基层状氧化物正极材料及其制备方法和应用,包括以下步骤:A、将钠源和锰源充分混合均匀,获得前驱体混合物;B、对前驱体混合物进行烧结处理,获得钠化锰基层状氧化物;C、对钠化锰基层状氧化物进行钠/锂离子交换反应,洗涤干燥得到锂化锰基层状氧化物正极材料。本发明通过钠/锂离子交换反应的方式制备出了具有高容量、低成本的锂化锰基层状氧化物正极材料,其相对于传统的富锂锰基正极材料和镍钴锰三元正极材料,其在放电比容量、循环性能等性能方面均有不俗的表现,由此可作为传统富锂锰基正极材料和镍钴锰三元正极材料的替换材料,以降低锂离子电池的制造成本,是一种极有潜力的锂离子电池正极材料。
-
公开(公告)号:CN115360340A
公开(公告)日:2022-11-18
申请号:CN202211167558.X
申请日:2022-09-23
申请人: 北京理工大学
IPC分类号: H01M4/36 , H01M4/58 , H01M4/583 , H01M10/054
摘要: 本发明涉及一种阴阳离子功能化掺杂改性的高熵聚阴离子型正极材料、制备方法及其应用,属于钠离子电池技术领域。所述正极材料包含正极内核和碳包覆层,所述正极内核的化学式为NaδAαBβCγXσYmZn,其中A为V3+和/或Fe2+,B为Cu2+、Mn2+和Cr3+中的一种以上,C为Ni2+和/或Ti4+,X为PO43‑和/或P2O74‑,Y为SO42‑、N3‑和F‑中的一种以上,Z为BO33‑、SiO44‑、S2‑和Cl‑中的一种以上,所述高熵聚阴离子型正极材料粒径为10μm~40μm,碳包覆层厚度为5nm~10nm。采用阴阳离子协同作用对过渡金属位和聚阴离子位基团分布进行定向设计,构建阴阳离子兼容的高熵化结构,控制晶相的归一化生长及定向构筑,实现成本优势、电压容量优势以及导电性优势的协同控制。
-
-
-
-
-
-
-
-
-