-
公开(公告)号:CN111143838B
公开(公告)日:2022-04-12
申请号:CN201911378249.5
申请日:2019-12-27
申请人: 北京科东电力控制系统有限责任公司 , 国网福建省电力有限公司 , 东北大学
摘要: 本发明公开了数据库用户异常行为检测方法,包括:将数据库事务数据集中数据库事务记录的属性转化为纯数值型属性的元组;将数据库事务特征集合作为OPTICS算法的聚类数据进行聚类;根据聚类结果,将被标记为簇标签的记录标记为正常的用户行为,对于未能获得簇标签的记录作为离群元组集合记录的LOF值计算,对于LOF值小于设定值的记录将其标记为正常的用户行为;对于其他未被标记的记录输入至预先训练完成的集成学习分类模型进行分类获得分类结果;所有数据库事务特征都标记完成获得最终确定用户行为模式库;利用用户行为模式库匹配数据库事务数据完成用户异常行为检测。本发明能够明显提高入侵检测能力降低误报率,提高数据库用户异常行为检测效率。
-
公开(公告)号:CN111143838A
公开(公告)日:2020-05-12
申请号:CN201911378249.5
申请日:2019-12-27
申请人: 北京科东电力控制系统有限责任公司 , 国网福建省电力有限公司 , 东北大学
摘要: 本发明公开了数据库用户异常行为检测方法,包括:将数据库事务数据集中数据库事务记录的属性转化为纯数值型属性的元组;将数据库事务特征集合作为OPTICS算法的聚类数据进行聚类;根据聚类结果,将被标记为簇标签的记录标记为正常的用户行为,对于未能获得簇标签的记录作为离群元组集合记录的LOF值计算,对于LOF值小于设定值的记录将其标记为正常的用户行为;对于其他未被标记的记录输入至预先训练完成的集成学习分类模型进行分类获得分类结果;所有数据库事务特征都标记完成获得最终确定用户行为模式库;利用用户行为模式库匹配数据库事务数据完成用户异常行为检测。本发明能够明显提高入侵检测能力降低误报率,提高数据库用户异常行为检测效率。
-