-
公开(公告)号:CN110393954B
公开(公告)日:2020-05-12
申请号:CN201910636652.7
申请日:2019-07-15
Applicant: 北京科技大学
Abstract: 本发明提供一种基于强化学习的浓密机在线控制方法,能够降低时间消耗,并提高控制精度。所述方法包括:获取生产过程中所监测到的历史记录数据;建立由模型网络和评价网络组成的双网结构的控制模型,并利用获取到的历史记录数据对所述模型网络和评价网络进行训练;通过训练好的模型网络预测下一时刻的底流浓度和泥层高度,且训练好的评价网络根据预测到的所述下一时刻的底流浓度、泥层高度,估计所述下一时刻的累计代价值,根据估计得到的下一时刻的累计代价值,计算当前时刻的累计代价值,根据得到的当前时刻的累计代价值,利用梯度下降迭代算法确定当前时刻最优控制动作:底流泵速、絮凝剂泵速。本发明涉及采矿领域。
-
公开(公告)号:CN110090478A
公开(公告)日:2019-08-06
申请号:CN201910373119.6
申请日:2019-05-06
Applicant: 北京科技大学
Abstract: 本发明提供一种充填场景下的深锥浓密机智能控制方法,能够提高底流浓度的控制精度。所述方法包括:建立底流浓度控制模型控制底流浓度,通过历史记录数据离线训练神经网络规划器,输出最优的耙架转速设定值、絮凝剂添加比例以及泥层压力设定值;絮凝剂控制器根据实时监测数据及最优絮凝剂添加比例,动态调节絮凝剂添加流量设定值;泥层压力控制器调节底流流量设定值,使深锥浓密机泥层压力监测值追踪最优泥层压力设定值;将得到的最优耙架转速设定值,絮凝剂添加量设定值以及底流流量设定值实时应用到实际充填过程中,并实时产生的监测数据实时传输到底流浓度控制模型中,用于底流浓度控制模型的在线学习训练。本发明涉及矿山尾矿处置领域。
-
公开(公告)号:CN110090478B
公开(公告)日:2020-06-02
申请号:CN201910373119.6
申请日:2019-05-06
Applicant: 北京科技大学
Abstract: 本发明提供一种充填场景下的深锥浓密机智能控制方法,能够提高底流浓度的控制精度。所述方法包括:建立底流浓度控制模型控制底流浓度,通过历史记录数据离线训练神经网络规划器,输出最优的耙架转速设定值、絮凝剂添加比例以及泥层压力设定值;絮凝剂控制器根据实时监测数据及最优絮凝剂添加比例,动态调节絮凝剂添加流量设定值;泥层压力控制器调节底流流量设定值,使深锥浓密机泥层压力监测值追踪最优泥层压力设定值;将得到的最优耙架转速设定值,絮凝剂添加量设定值以及底流流量设定值实时应用到实际充填过程中,并实时产生的监测数据实时传输到底流浓度控制模型中,用于底流浓度控制模型的在线学习训练。本发明涉及矿山尾矿处置领域。
-
公开(公告)号:CN110393954A
公开(公告)日:2019-11-01
申请号:CN201910636652.7
申请日:2019-07-15
Applicant: 北京科技大学
Abstract: 本发明提供一种基于强化学习的浓密机在线控制方法,能够降低时间消耗,并提高控制精度。所述方法包括:获取生产过程中所监测到的历史记录数据;建立由模型网络和评价网络组成的双网结构的控制模型,并利用获取到的历史记录数据对所述模型网络和评价网络进行训练;通过训练好的模型网络预测下一时刻的底流浓度和泥层高度,且训练好的评价网络根据预测到的所述下一时刻的底流浓度、泥层高度,估计所述下一时刻的累计代价值,根据估计得到的下一时刻的累计代价值,计算当前时刻的累计代价值,根据得到的当前时刻的累计代价值,利用梯度下降迭代算法确定当前时刻最优控制动作:底流泵速、絮凝剂泵速。本发明涉及采矿领域。
-
-
-