-
公开(公告)号:CN114021713B
公开(公告)日:2024-07-26
申请号:CN202111327926.8
申请日:2021-11-10
Applicant: 北京邮电大学
Abstract: 本发明公开了一种基于神经元级别迁移学习的光路传输质量估计方法,能够在少量训练样本下得到准确度更高的QoT估计模型,进一步提升网络资源利用率。本发明基于神经元重要性搜索迁移模型结构,得到较为优性的迁移模型结构,有效完成源域知识向目标域知识的迁移任务,可以克服光网络部署初期收集网络参数数据样本较少而难以实现准确QoT估计的问题,是一种可以适应未来光网络有效部署,提升网络资源利用率的优性光路QoT估计机制。
-
公开(公告)号:CN114021713A
公开(公告)日:2022-02-08
申请号:CN202111327926.8
申请日:2021-11-10
Applicant: 北京邮电大学
Abstract: 本发明公开了一种基于神经元级别迁移学习的光路传输质量估计方法,能够在少量训练样本下得到准确度更高的QoT估计模型,进一步提升网络资源利用率。本发明基于神经元重要性搜索迁移模型结构,得到较为优性的迁移模型结构,有效完成源域知识向目标域知识的迁移任务,可以克服光网络部署初期收集网络参数数据样本较少而难以实现准确QoT估计的问题,是一种可以适应未来光网络有效部署,提升网络资源利用率的优性光路QoT估计机制。
-