一种迁移学习方法及装置

    公开(公告)号:CN109948741A

    公开(公告)日:2019-06-28

    申请号:CN201910161120.2

    申请日:2019-03-04

    IPC分类号: G06K9/66 G06K9/62

    摘要: 本发明实施例提供一种迁移学习方法及装置,该方法包括:获取预处理后的子序列和密集预测网络模型,预处理后的子序列包括源域子序列和目标域子序列;将源域子序列和目标域子序列分批次输入密集预测网络模型,得到全局移位损失;获取源域标签和目标域伪标签,基于余弦距离损失和滑动平均方法,根据源域标签和目标域伪标签进行对应类别质心对齐,得到对应类别移位损失;根据全局移位损失和对应类别移位损失得到总损失,根据总损失更新密集预测网络模型。本发明实施例提供的迁移学习方法及装置,提出一种多层次无监督域适应的方法,完成边缘分布和条件分布的对齐,实现对时间序列数据密集预测模型的迁移,性能更优越。

    针对多类不均衡异常流量的网络攻击检测方法及装置

    公开(公告)号:CN110572362B

    公开(公告)日:2020-09-15

    申请号:CN201910718219.8

    申请日:2019-08-05

    IPC分类号: H04L29/06 G06N3/04

    摘要: 本发明实施例提供一种针对多类不均衡异常流量的网络攻击检测方法及装置。方法包括:获取网络中待检测流量包的特征数据;将特征数据输入至预设神经网络模型中的若干组交替设置的特征提取层和特征融合层,得到融合特征;将融合特征输入至预设神经网络模型中的分类层,根据分类结果确定待检测流量包对应的网络攻击类型;其中,特征提取层,用于提取特征数据的语义特征和高分辨率特征;特征融合层,用于对语义特征和高分辨率特征进行特征融合;预设神经网络模型是根据带有网络攻击类型标签的特征数据进行训练后得到的。能够有效地对不同网络攻击类型下的流量包进行准确分类,确保了网络攻击检测结果的准确性。

    一种网络入侵检测方法及系统

    公开(公告)号:CN111209563A

    公开(公告)日:2020-05-29

    申请号:CN201911382869.6

    申请日:2019-12-27

    IPC分类号: G06F21/55 G06K9/62 G06N3/04

    摘要: 本发明实施例提供一种网络入侵检测方法及系统,该方法包括:基于训练好的网络入侵检测模型对待检测网络数据进行检测,并对得到的检测结果进行分析判断,若判断获知待检测网络数据为网络已知数据,则根据检测结果,对网络已知数据进行细粒度分类;若判断获知待检测网络数据为网络未知类别入侵数据,则对网络未知类别入侵数据进行聚类,获取网络未知类别入侵数据中各类别的聚类质心;根据网络未知类别入侵数据中各类别的聚类质心,对训练好的网络入侵检测模型的分类器进行更新,以根据更新后的网络入侵检测模型对后续待检测网络数据中网络未知类别入侵数据进行入侵检测。本发明实施例实现对网络未知入侵的识别和学习。

    针对多类不均衡异常流量的网络攻击检测方法及装置

    公开(公告)号:CN110572362A

    公开(公告)日:2019-12-13

    申请号:CN201910718219.8

    申请日:2019-08-05

    IPC分类号: H04L29/06 G06N3/04

    摘要: 本发明实施例提供一种针对多类不均衡异常流量的网络攻击检测方法及装置。方法包括:获取网络中待检测流量包的特征数据;将特征数据输入至预设神经网络模型中的若干组交替设置的特征提取层和特征融合层,得到融合特征;将融合特征输入至预设神经网络模型中的分类层,根据分类结果确定待检测流量包对应的网络攻击类型;其中,特征提取层,用于提取特征数据的语义特征和高分辨率特征;特征融合层,用于对语义特征和高分辨率特征进行特征融合;预设神经网络模型是根据带有网络攻击类型标签的特征数据进行训练后得到的。能够有效地对不同网络攻击类型下的流量包进行准确分类,确保了网络攻击检测结果的准确性。

    一种网络入侵检测方法及系统

    公开(公告)号:CN111209563B

    公开(公告)日:2022-04-08

    申请号:CN201911382869.6

    申请日:2019-12-27

    IPC分类号: G06F21/55 G06K9/62 G06N3/04

    摘要: 本发明实施例提供一种网络入侵检测方法及系统,该方法包括:基于训练好的网络入侵检测模型对待检测网络数据进行检测,并对得到的检测结果进行分析判断,若判断获知待检测网络数据为网络已知数据,则根据检测结果,对网络已知数据进行细粒度分类;若判断获知待检测网络数据为网络未知类别入侵数据,则对网络未知类别入侵数据进行聚类,获取网络未知类别入侵数据中各类别的聚类质心;根据网络未知类别入侵数据中各类别的聚类质心,对训练好的网络入侵检测模型的分类器进行更新,以根据更新后的网络入侵检测模型对后续待检测网络数据中网络未知类别入侵数据进行入侵检测。本发明实施例实现对网络未知入侵的识别和学习。