-
公开(公告)号:CN110766658B
公开(公告)日:2022-06-14
申请号:CN201910899277.5
申请日:2019-09-23
Applicant: 华中科技大学
Abstract: 本发明公开了一种无参考激光干扰图像质量评价方法,属于图像处理领域,该方法包括:构建支撑向量回归器;该支撑向量回归器包括:局部特征提取模块,对输入图像进行局部信息估计,得到局部信息估计特征;自然场景统计特征提取模块,对输入图像进行基于空间域的自然场景统计,得到自然场景统计特征;质量评分模块,根据局部信息估计特征和自然场景统计特征,对输入图像质量进行评分;将干扰图像数据集输入支撑向量回归器进行训练,得到训练好的支撑向量回归器;将待评价图像输入训练好的支撑向量回归器进行质量评价,得到待评价图像的质量评分。本发明能够真实描述激光干扰图像的失真,在不需要参考图像的基础上准确反映激光干扰图像的质量损失。
-
公开(公告)号:CN110766657A
公开(公告)日:2020-02-07
申请号:CN201910893060.3
申请日:2019-09-20
Applicant: 华中科技大学
IPC: G06T7/00
Abstract: 本发明公开了一种激光干扰图像质量评价方法,包括:获取激光干扰图像及其对应的参考图像;采用相同卷积网络分别对激光干扰图像和参考图像依次进行多次不同层次特征提取的卷积池化操作;计算激光干扰图像和参考图像经相同次卷积池化时得到的特征向量之间的相似度,并对所有相似度之间进行加权计算得到图像质量评分。本发明在激光干扰图像质量评估中引入卷积网络,利用参考图像和干扰图像在卷积网络各卷积层输出特征的相识度,度量干扰图像的失真程度,充分利用卷积网络提取特征的层次性和对遮挡的敏感性。另外,将所有卷积池化对应的相似度值作加权计算,最终评价得分符合实际人眼主观感知,可靠性高,不需要检测目标和光斑的位置,应用场景较广。
-
公开(公告)号:CN110766657B
公开(公告)日:2022-03-18
申请号:CN201910893060.3
申请日:2019-09-20
Applicant: 华中科技大学
IPC: G06T7/00
Abstract: 本发明公开了一种激光干扰图像质量评价方法,包括:获取激光干扰图像及其对应的参考图像;采用相同卷积网络分别对激光干扰图像和参考图像依次进行多次不同层次特征提取的卷积池化操作;计算激光干扰图像和参考图像经相同次卷积池化时得到的特征向量之间的相似度,并对所有相似度之间进行加权计算得到图像质量评分。本发明在激光干扰图像质量评估中引入卷积网络,利用参考图像和干扰图像在卷积网络各卷积层输出特征的相识度,度量干扰图像的失真程度,充分利用卷积网络提取特征的层次性和对遮挡的敏感性。另外,将所有卷积池化对应的相似度值作加权计算,最终评价得分符合实际人眼主观感知,可靠性高,不需要检测目标和光斑的位置,应用场景较广。
-
公开(公告)号:CN110766658A
公开(公告)日:2020-02-07
申请号:CN201910899277.5
申请日:2019-09-23
Applicant: 华中科技大学
Abstract: 本发明公开了一种无参考激光干扰图像质量评价方法,属于图像处理领域,该方法包括:构建支撑向量回归器;该支撑向量回归器包括:局部特征提取模块,对输入图像进行局部信息估计,得到局部信息估计特征;自然场景统计特征提取模块,对输入图像进行基于空间域的自然场景统计,得到自然场景统计特征;质量评分模块,根据局部信息估计特征和自然场景统计特征,对输入图像质量进行评分;将干扰图像数据集输入支撑向量回归器进行训练,得到训练好的支撑向量回归器;将待评价图像输入训练好的支撑向量回归器进行质量评价,得到待评价图像的质量评分。本发明能够真实描述激光干扰图像的失真,在不需要参考图像的基础上准确反映激光干扰图像的质量损失。
-
-
-