-
公开(公告)号:CN116129292A
公开(公告)日:2023-05-16
申请号:CN202310081193.7
申请日:2023-01-13
申请人: 华中科技大学
IPC分类号: G06V20/17 , G06V10/82 , G06N3/0475 , G06N3/094
摘要: 本发明公开了一种基于少样本增广的红外车辆目标检测方法及系统。该方法包括:采用场景及目标三维模型进行多视角仿真,得到多视角红外车辆图像;将多视角红外车辆图像与实际的红外车辆图像结合,构建基于迁移学习的红外生成对抗网络模型,生成红外车辆目标样本图像的初始增广数据集;采用场景合成的方法,引入复杂场景特征,生成具有多样化背景的红外车辆目标样本图像的目标增广数据集;以目标增广数据集作为训练样本对目标检测模型进行迭代训练;获取实拍红外图像输入训练好的目标检测模型进行检测,得到目标检测位置和置信度信息。实现了对红外车辆图像的高精度目标检测,适用性较好。
-
公开(公告)号:CN115861595B
公开(公告)日:2024-05-24
申请号:CN202211448179.8
申请日:2022-11-18
申请人: 华中科技大学
IPC分类号: G06V10/25 , G06V10/75 , G06V10/764 , G06V10/774 , G06N20/00
摘要: 本发明公开了一种基于深度学习的多尺度域自适应异源图像匹配方法,属于图像匹配技术领域,包括:利用多尺度域自适应的特征提取网络提取异源图像中更加高级的特征,这些特征为异源图像的共有特征,利用共有特征能够更好的对不同源的图像进行精确匹配。其中,引用的金字塔分割注意力模块,能够很好的提取出不同尺度的图像特征,使得训练得到得网络模型能更好地适用尺度的变化。引入了条件域归一化的特征映射,使得训练的模型能够很好的适应不同源图像的数据分布。本发明利用PSA模块获得图像更多尺度的特征,用条件域归一化的特征映射来减小异源图像的特征差异,从而提高了异源图像匹配的精度,由此解决异源图像匹配的精度低的技术问题。
-
公开(公告)号:CN116129292B
公开(公告)日:2024-07-26
申请号:CN202310081193.7
申请日:2023-01-13
申请人: 华中科技大学
IPC分类号: G06V20/17 , G06V10/82 , G06N3/0475 , G06N3/094
摘要: 本发明公开了一种基于少样本增广的红外车辆目标检测方法及系统。该方法包括:采用场景及目标三维模型进行多视角仿真,得到多视角红外车辆图像;将多视角红外车辆图像与实际的红外车辆图像结合,构建基于迁移学习的红外生成对抗网络模型,生成红外车辆目标样本图像的初始增广数据集;采用场景合成的方法,引入复杂场景特征,生成具有多样化背景的红外车辆目标样本图像的目标增广数据集;以目标增广数据集作为训练样本对目标检测模型进行迭代训练;获取实拍红外图像输入训练好的目标检测模型进行检测,得到目标检测位置和置信度信息。实现了对红外车辆图像的高精度目标检测,适用性较好。
-
公开(公告)号:CN115861595A
公开(公告)日:2023-03-28
申请号:CN202211448179.8
申请日:2022-11-18
申请人: 华中科技大学
IPC分类号: G06V10/25 , G06V10/75 , G06V10/764 , G06V10/774 , G06N20/00
摘要: 本发明公开了一种基于深度学习的多尺度域自适应异源图像匹配方法,属于图像匹配技术领域,包括:利用多尺度域自适应的特征提取网络提取异源图像中更加高级的特征,这些特征为异源图像的共有特征,利用共有特征能够更好的对不同源的图像进行精确匹配。其中,引用的金字塔分割注意力模块,能够很好的提取出不同尺度的图像特征,使得训练得到得网络模型能更好地适用尺度的变化。引入了条件域归一化的特征映射,使得训练的模型能够很好的适应不同源图像的数据分布。本发明利用PSA模块获得图像更多尺度的特征,用条件域归一化的特征映射来减小异源图像的特征差异,从而提高了异源图像匹配的精度,由此解决异源图像匹配的精度低的技术问题。
-
-
-