-
公开(公告)号:CN106202184B
公开(公告)日:2019-05-31
申请号:CN201610481556.6
申请日:2016-06-27
Applicant: 华中科技大学
IPC: G06F16/907 , G06F16/903
Abstract: 本发明公开了一种面向高校图书馆的图书个性化推荐的方法,解决高校图书馆现有的图书推荐算法中大规模数据存储和查询、可扩展性及推荐效果差的问题,其基本思路如下:首先将图书馆内的读者和图书等作为节点,构建图模型;其次,将读者的操作日志文件转化为读者‑图书类别偏好矩阵,和读者个人信息矩阵一起计算读者间的相似度,并把这些操作和挖掘出的信息作为边构建关联图谱;其次,将关联图谱和谱聚类相结合,提出了一种新的图书个性化推荐模型,计算得到关于读者的类簇分布;最后,当需要进行图书推荐时,在该读者对应的类簇中根据协同过滤算法计算出推荐图书列表。
-
公开(公告)号:CN106202184A
公开(公告)日:2016-12-07
申请号:CN201610481556.6
申请日:2016-06-27
Applicant: 华中科技大学
IPC: G06F17/30
CPC classification number: G06F16/90335 , G06F16/907
Abstract: 本发明公开了一种面向高校图书馆的图书个性化推荐的方法,解决高校图书馆现有的图书推荐算法中大规模数据存储和查询、可扩展性及推荐效果差的问题,其基本思路如下:首先将图书馆内的读者和图书等作为节点,构建图模型;其次,将读者的操作日志文件转化为读者-图书类别偏好矩阵,和读者个人信息矩阵一起计算读者间的相似度,并把这些操作和挖掘出的信息作为边构建关联图谱;其次,将关联图谱和谱聚类相结合,提出了一种新的图书个性化推荐模型,计算得到关于读者的类簇分布;最后,当需要进行图书推荐时,在该读者对应的类簇中根据协同过滤算法计算出推荐图书列表。
-