一种神经网络的优化方法及相关设备

    公开(公告)号:CN111950700A

    公开(公告)日:2020-11-17

    申请号:CN202010650726.5

    申请日:2020-07-06

    IPC分类号: G06N3/04 G06K9/62 G06T3/40

    摘要: 本申请实施例公开了一种神经网络的优化方法及相关设备,可应用于人工智能领域中的计算机视觉领域(如,图像超分辨重建)等,该方法包括:通过一种新的量化模型对神经网络的权重矩阵/特征表示(或称特征图、激活值)进行二值化,具体地,第一量化模型用于根据神经网络第1层至第m层的m个第一权重矩阵得到神经网络第m层的第二权重矩阵,第二量化模型用于根据第1层至第m层的m个第一特征表示得到神经网络第m层的第二特征表示,这种优化方式使得各层权重矩阵/特征表示的取值不仅和自身相关,也与其他层的权重矩阵/特征表示相关,降低了量化误差,使神经网络的训练和使用更加高效,同时,相比现有二值神经网络,提高了图像信息处理的精度。