-
公开(公告)号:CN104008551A
公开(公告)日:2014-08-27
申请号:CN201410255640.7
申请日:2014-06-10
申请人: 华南农业大学
摘要: 本发明公开了一种基于可见光图像的柑橘黄龙病检测方法,在训练阶段,采集大量已感染柑橘黄龙病的柑橘叶片的图像以及正常叶片的图像,提取纹理特征和颜色特征的特征值,将上述特征值与正常叶片的特征值通过BP神经网络进行训练、学习,得到最优的BP神经网络模型;在进行识别阶段,提取待识别叶片图像的特征,输入上述最优的BP神经网络模型中,即判断柑橘树是否健康。本发明还可进一步判断黄龙病的种类,以及是否是非黄龙病黄化。本发明能够对柑橘黄龙病进行早期、准确、非破坏性诊断,具有检测精度高的优点。
-
公开(公告)号:CN104008551B
公开(公告)日:2017-06-13
申请号:CN201410255640.7
申请日:2014-06-10
申请人: 华南农业大学
摘要: 本发明公开了一种基于可见光图像的柑橘黄龙病检测方法,在训练阶段,采集大量已感染柑橘黄龙病的柑橘叶片的图像以及正常叶片的图像,提取纹理特征和颜色特征的特征值,将上述特征值与正常叶片的特征值通过BP神经网络进行训练、学习,得到最优的BP神经网络模型;在进行识别阶段,提取待识别叶片图像的特征,输入上述最优的BP神经网络模型中,即判断柑橘树是否健康。本发明还可进一步判断黄龙病的种类,以及是否是非黄龙病黄化。本发明能够对柑橘黄龙病进行早期、准确、非破坏性诊断,具有检测精度高的优点。
-